Functional Data Structures
with Isabelle/HOL

Tobias Nipkow

Fakultat fiir Informatik
Technische Universitat Miinchen

2017-2-3

Part |l

Functional Data Structures

Chapter 1

Binary Trees

@ Binary Trees

@® Basic Functions

© Interlude: Arithmetic in Isabelle
O More Basic Functions

@ Complete and Balanced Trees

@ Binary Trees

Library/Tree.thy

Binary trees

datatype a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

()
(l, a, 7)

Leaf
Node l a r

In the sequel: tree = binary tree

@® Basic Functions

Tree traversal

inorder :: 'a tree = 'a list

inorder () = ||
inorder (I, x, r) = inorder | Q [z] @ inorder r

preorder :: 'a tree = 'a list

preorder () = ||
preorder (I, x, r) = x # preorder | Q preorder r

postorder :: 'a tree = 'a list

postorder () = ||
postorder (I, x, vy = postorder | Q postorder r Q [

size 2 'a tree = nat

(1 =0
(Ll =11+ 1l +1

sizel :: 'a tree = nat

[th =t +1
=
1Ol =1

(L 2,)= [l + [rh
Lemma The number of leaves in tis |{|;.

Warning: |.| and |.|; only on slides

Size

10

Height

height :: 'a tree = nat

W) = 0
W({l, —. 1)) = maz (h(D) (h(r) + 1

Warning: h(.) only on slides
Lemma A(t) < [

Lemma |[f|; < 2/

11

© Interlude: Arithmetic in Isabelle

12

© Interlude: Arithmetic in Isabelle
Numeric Types

13

Numeric types: nat, int, real

Need conversion functions (inclusions):

mt o nat = nt
real :: nat = real
real_of_int :: nt = real

If you need type real,
import theory Complex_Main instead of Main

14

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(with theory Complex,Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples

(@::int) + (ninat) ~~ @+ intn
((n:nat) + n) = real ~~ real(n+n), real n + real n

15

Numeric types: nat, int, real

Coercion in the other direction:

nat :: int = nat
floor = real = int
ceiling 1 real = int

16

Overloaded arithmetic operations

Numbers are overloaded: 0, 1, 2, ... :: 'a
Basic arithmetic functions are overloaded:

op+, op—,opx:'a="a="a

—=x'a="a

Division on nat and nt:

op div, op mod :: 'a = 'a = a

Division on real: op / :: 'a = 'a = 'a
Exponentiation with nat: op ~:: 'a = nat = 'a
Exponentiation with real: op powr :: 'a = 'a = 'a
Absolute value: abs :: 'a = a

17

© Interlude: Arithmetic in Isabelle

Chains of (In)Equations

18

Chains of equations
Textbook proof
ty =ty (justification)
=t3 (justification)

=t, (justification)

In Isabelle:
have "#; = " (proof)
also have "... = 3" (proof)
also have "... = t," (proof)

finally have "¢, = ¢," .

" is literally three dots

19

Chains of equations and inequations

Instead of = you may also use < and <.

Example

have "#; < " (proof)

also have "... = 3" (proof)
also have "... < t," (proof)

finally have "t; < t," .

20

How to interpret “...

have "#; < #&" (proof)
also have "... = 3" (proof)

Here “..." is internally replaced by t,

In general, if this is the formula p t; ¢, where p is some
constant, then “..." stands for t.

21

© Interlude: Arithmetic in Isabelle

Proof Automation

22

Linear formulas
Only:
variables
numbers
number * variable
b
= <, <
- AV, —, —

Examples
Linear: 3xr+bxy<z—zr<z
Nonlinear: =z < z % x

23

Extended linear formulas

Also allowed:

min, max

even, odd

t div n, t mod n where nis a number
conversion functions

nat, floor, ceiling, abs

24

Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to solve arithmetic formulas.
e Succeeds or fails

e Decision procedure for extended linear formulas;
for types nat and int, the extended linear formulas
may also contain V and 3

e Nonlinear subformulas are viewed as (new) variables;
for example, z < z % x isviewed as z < y

25

Automatic proof

of arithmetic formulas
by (simp add: algebra_simps)

The lemmas list algebra_simps helps to simplify
arithmetic formulas

It applies associativity, commutativity and
distributivity of + and x.

This may prove the formula, may make it simpler,
or may make it unreadable.

It is a decision procedure for equations over rings
(e.g. int)

26

Automatic proof

of arithmetic formulas
by (simp add: field_simps)

e The lemmas list field_simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg.zx vy / (zx2),if r# 0 can be proved.

27

End of interlude, back to trees . ..

28

Tree.thy

¢y < 2k

29

O More Basic Functions

30

Minimal height

man_height :: 'a tree = nat

mh(()) =0
mh({l, -, r)) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides
Lemma mh(t) < h(t)

Lemma 2™ < |4

31

Internal path length

ipl =2 'a tree = nat

ipl () =0
ipl (I, _, vy = ipl L+ ||| + ipl v+ |r]

Why relevant?

Upper bound?

32

@ Complete and Balanced Trees

33

Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, _, r) =

(complete I A complete A\ h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 2"V

Lemma |t|; = 2"Y — complete t
Lemma |f|; = 2™ — complete t

Corollary — complete t = |t|; < (1)
Corollary — complete t = 2™ < |¢|;

34

Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" 4 2,

In a search tree, finding the node labelled x takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |t|.

Lemma Let ¢ be a complete search tree of height h.
The average time to find a random element that is in the
tree is asymptotically & — 2 (as h approaches co):

iplt) [t ~h — 2

35

Complete tree: ipl

A problem: (h — 2) x 2" + 2 is only correct if
interpreted over type int, not nat.

Correct version:
Lemma complete t =
int (ipl t) = (int (h(1)) — 2) * 2D 4 2

We do not cover the Isabelle formalization of limits.

36

Balanced tree

balanced :: 'a tree = bool
balanced t = (h(t) — mh(t) < 1)

Balanced trees have optimal height:
Lemma If balanced t N |t| < |t| then h(t) < h(t).

37

Warning

e The terms complete and balanced
are not defined uniquely in the literature.

e For example,
Knuth calls complete what we call balanced.

38

Chapter 2

Search Trees

@ Unbalanced BST

@ AVL Trees

©® Red-Black Trees

40

Most of the material focuses on
BSTs = binary search trees

41

BSTs represent sets

Any tree represents a set:

set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, x, r) = set_tree | U {z} U set_tree r

A BST represents a set that can be searched in time

O(h(?))

Function set_tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object

42

bst

bst :: 'a tree = bool

bst () = True

bst (I, a, 1) =

(bst I A\ bst T A

(V zeset_tree . x < a) N
(V z€set_tree r. a < 1))

Type 'a must be in class linorder ('a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder

43

Interface

An implementation of sets of elements of type ‘a must
provide

An implementation type s
empty :: s

insert :: 'a = 's = s
delete :: 'a = 's = s

isin 2 's = 'a = bool

44

Alternative interface

Instead of a set, a search tree can also implement a map
from ‘a to 'b:

An implementation type 'm
empty = 'm

update :: 'a = b = 'm = 'm
delete :: 'a = 'm = 'm
lookup :: 'm = 'a = 'b option

Sets are a special case of maps

45

Comparison of elements

We assume that the element type 'a is a linear order

Instead of using < and < directly:
datatype cmp val = LT | EQ | GT

cmp Ty =
(if z < y then LT else if x = y then EQ else GT)

46

@ Unbalanced BST

47

Implementation

Implementation type: ‘a tree

empty = Leaf

insert T <; = ((), z, ()

insert x (I, a, r) = (case cmp z a of
LT = (insert x I, a, T)
| EQ = (I, a, 1)
| GT = (I, a, insert x 1))

48

Implementation

isin () © = False
isin (I, a,) © = (case cmp x a of
LT = isinlx
| EQ = True
| GT = isin r)

49

Implementation

delete z () = ()
delete z (I, a, r) =
(case cmp x a of
LT = (delete z 1, a, 1)
| EQ = if r= () then [
else let (a’, r') = del-min rin (I, o/, 1)
| GT = (I, a, delete x 1))

del_-min (I, a, r) =
(if 1= () then (a, 1)
else let (x, I') = del.min Lin (z, (I, a, 1)))

50

@ Unbalanced BST
Correctness

51

Why is this implementation
correct?

Because empty wnsert delete isin

simulate {} U {} —{} €

set_tree empty = {}

set_tree (insert x t) = set_tree t U {x}
set_tree (delete x t) = set_tree t — {z}
isin t x = (x € set_tree t)

Under the assumption bst ¢

52

Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete z t)

53

@ Unbalanced BST

Correctness Proof Method Based on Sorted Lists

54

sorted :: 'a list = bool

sorted [| = True
sorted [z] = True
sorted (z # y # 2s) = (x < y A sorted (y # zs))

No duplicates!

55

Structural invariant

The proof method works not just for unbalanced trees.
We assume that there is some structural invariant on the
search tree:

inv : 's = bool

e.g. some balance criterion.

56

Correctness of insert

inv t A\ sorted (inorder t) —>
inorder (insert x t) = ins_list x (inorder t)

where
ins_list 2 'a = 'a list = 'a list

inserts an element into a sorted list.

Also covers preservation of bst

57

Correctness of delete

inv t A\ sorted (inorder t) —>
inorder (delete x t) = del_list x (inorder t)

where
del_list :: 'a = 'a list = 'a list

deletes an element from a sorted list.

Also covers preservation of bst

58

Correctness of 7s1n

inv t A\ sorted (inorder t) =
isin t v = (xz € elems (inorder t))

where
elems :: 'a list = 'a set

converts a list into a set.

59

@ AVL Trees

60

Data_Structures/AVL_Set.thy

61

©® Red-Black Trees

62

Data_Structures/RBT_Set.thy

63

Relationship to 2-3-4 trees

Red-black trees

datatype color = Red | Black

datatype
'a bt = Leaf | Node color ('a tree) 'a ('a tree)
Abbreviations:
() = Leaf
(¢, ,a,7) = Nodeclar
Rlar Node Red [a r

Blar Node Black | a r

65

Color

color :: 'a rbt = color
color () = Black

color (¢, , .,) =c¢
paint :: color = 'a rbt = 'a rbt

paint ¢ () = ()
paint ¢ (-, I, a, 1) = (¢, |, a, 1)

66

Invariants

rbt =2 'a rbt = bool
rbt t = (inve t A invh t A\ color t = Black)

inve = 'a rbt = bool

inve () = True

inve (¢, l, ., 1y =

(inve I A inve A

(¢ = Red — color | = Black N color r = Black))

67

Invariants

invh :: 'a bt = bool
invh () = True
invh (_, I, -, r) = (invh I A invh r A\ bh(l) = bh(r))

bheight :: 'a rbt = nat

bh(()) = 0
bh(<cu L -, *>) -
(if ¢ = Black then bh(l) + 1 else bh(]))

68

Exercise

Is snvh what we want?

Define a function Bpl :: 'a rbt = nat set
such that Bpl t (“black path lengths") is the set of all n
such that there is a path from the root of ¢ to a leaf that

contains exactly n black nodes.
Prove invh t = Bplt = {bh(?)}

69

Logarithmic height

Lemma
rbt t — h(t) < 2 % log2 |t|1

70

Insertion
insert :: 'a = 'a rbt = 'a rbt
insert x t = paint Black (ins z t)

ins :: 'a = 'a rbt = 'a rbt
insz () =R () z()
ins x (Bl ar)= (case cmp = a of
LT = baliL (ins z 1) a r
| EQ= Blar
| GT = baliR [a (ins x 1))

ins x (R 1lar) = (case cmp x a of
LT= R(inszl)ar
| EQ= Rlar
| GT = Rla(inszr))

71

Adjusting colors

insx(Blar)=..bal(insxzl)ar..balla/(inszr) ..

baliL, baliR :: 'a rbt = 'a = 'a rbt = 'a bt
o Combine arguments [a r into tree, ideally (I, a, 7)
e Treat invariant violation Red-Red in [/r
baliL (R (R tl ap tg) as tg) as t4 =
R (Bt ay) ay (B t3 ag ty)
baliL (R tl aq (R tg as t3>) as t4 =
R (B tl ay tg) ag (B t3 as t4)
e Principle: replace Red-Red by Red-Black
e Last equation: baliL lar= Blar
e Symmetric: baliR

72

Correctness via sorted lists

Lemma
inorder (baliL | a r) = inorder | @ a # inorder r
inorder (baliR | a 1) = inorder | @ a # inorder r

Lemma
sorted (inorder t) =
inorder (ins x t) = ins_list x (inorder t)

Corollary

sorted (inorder t) =
inorder (insert x t) = ins_list x (inorder t)

Proofs easy!

73

Preservation of invariant

Theorem
rbt t = rbt (insert x t)

74

Chapter 3

Priority Queues

© Priority Queues

@ Leftist Heap

@® Skew Heap

@ Priority Queues Based on Braun Trees

76

© Priority Queues

v

Priority queue informally

Collection of elements with priorities

Operations:

empty

emptiness test

insert

get element with minimal priority
delete element with minimal priority

We focus on the priorities:
element = priority

78

Priority queues are multisets

The same element can be contained multiple times
in a priority queue
_—
The abstract view of a priority queue is a multiset

79

Multisets in Isabelle

Import "Library/Multiset"

80

Interface of implementation

The type of elements (= priorities) ’a is a linear order

An implementation of a priority queue of elements of
type 'a must provide

An implementation type ’q
empty :: 'q

is_empty :: 'qg = bool
insert :: 'a = "¢ =g
get-min :: 'qg = 'a

del_min :: ' = 'q

81

More operations

e merge :: 'qg= 'g="q
Often provided

o decrease key/priority
Not easy in functional setting

82

Correctness of implementation

A priority queue represents a multiset of priorities.
Correctness proof requires:

Abstraction function: mset :: ‘¢ = 'a multiset
Invariant: invar :: 'q = bool

83

Correctness of implementation
Must prove invar ¢ =

mset empty = {#}

is_empty q = (mset ¢ = {#})

mset (insert © q) = mset q + {#Ha#}

mset (del-min q) = mset ¢ — {#Fget-min ¢#}

q # empty =

get-min q € set g \ (VYx € set q. get-min q < 1)
where set ¢ = set_mset (mset q)

mvar empty
invar (insert x q)
invar (del_min q)

84

Terminology

A tree is a heap if for every subtree
the root is > all elements in the subtrees.

The term “heap” is frequently used synonymously with
“priority queue” .

85

Priority queue via heap

empty = ()

is_empty h = (h = ())

get-min (., a,) = a

Assume we have merge

insert a t = merge (), a, ()) t
del-min (I, a, vy = merge | r

86

Priority queue via heap

A naive merge:

merge t, ty = (case (t,t) of

() =&

(- 0) =t |

(<l1,a/1,7"1>, <l2,CL2,T2>) =
if a1 < ap then (merge Iy 1y, a1, to)
else (t1, ap, merge lp o)

Challenge: how to maintaining some kind of balance

87

@ Leftist Heap

88

Data_Structures/Leftist_Heap.thy

89

Leftist tree informally

The rank of a tree is the depth of the rightmost leaf.

In a leftist tree, the rank of every left child is > the rank
of its right sibling

90

Implementation type

datatype
'a lheap = Leaf | Node nat ('a tree) 'a ('a tree)

Abbreviations () and (h, [, a, r) as usual

Abstraction function:
mset_tree :: 'a lheap = 'a multiset

mset_tree () = {#}

mset_tree (_, I, a, 1) =
{#a#} + mset_tree | + mset_tree r

91

Heap

heap :: 'a lheap = bool
heap () = True
heap (_, I, a, vy = (heap I N\ heap r A
(Vz e# mset_tree | + mset_tree r. a < 1))

92

Leftist tree

rank :: 'a lheap = nat

rank () = 0
rank (., , ., r) = rankr+ 1

Node (n, [, a, r): n = rank of node

ltree :: 'a lheap = bool

ltree () = True
ltree (n, I, _, r) =
(n=rank r+ 1 A rank r < rank I A ltree [\ ltree r)

93

Leftist heap invariant

invar h = (heap h A ltree h)

94

Why leftist tree?

Lemma ltree t = 2"t < |t|

Lemma Execution time of merge t; t, is bounded by
rank t, + rank t

95

merge

Principle: descend on the right

merge () o = t

merge t; () = 4

merge (nq, b, a1, 1) (N9, b, as,) =

(if a1 < ay then node Iy a; (merge r1 (ng, b, ag, 1))
else node lp ay (merge rp (ny, b, a1, r1)))

node :: 'a lheap = 'a = 'a lheap = 'a lheap

node l a r=

(let rl=vrkl; rr=r1kr

inif rr < rlthen (rr+ 1, a,) else (rl + 1, r, a,)
where 7k (n, ., .,) =mn

96

merge

merge <n17 ll) ap, T1> <n27 l27 a, T2> —
(if a; < ap then node Iy a; (merge 1 (ng, b, as, 1))
else node Iy ay (merge rp (ny, b, a1, 11)))

Function merge terminates because
decreases with every recursive call.

97

Functional correctness proofs

including preservation of invar

Straightforward

98

Logarithmic complexity

Complexity measures t_merge, t_insert t_del_min:
count calls of merge.

Lemma t_merge [r < rank | 4+ rank r + 1
Lemma ltree | A ltree r —
t-merge [r < logy || + logy |11 + 1

Lemma
ltree t = t_insert x t < logs |t|; + 2

Lemma
ltree t => t_del_min t < 2 x logy |t|; + 1

99

Can we avoid the rank info in each node?

100

@® Skew Heap

101

Archive of Formal Proofs

https:
//www.isa-afp.org/entries/Skew_Heap.shtml

102

https://www.isa-afp.org/entries/Skew_Heap.shtml
https://www.isa-afp.org/entries/Skew_Heap.shtml

Note: merge is called meld

103

Ordinary binary trees

Invariant: heap

Implementation type

104

meld

Principle: swap subtrees when descending

meld h1 h2 =
(case hy of
<> = hy
‘ <l1, ap, ’/’1) =
case hy of
<> =
| <l2, as, T’2> =
if ay S as then (meld hg m, ai, l1>
else (meld hl T2, G2, l2>>

Function meld terminates because . ..

105

Functional correctness proofs

including preservation of heap

Straightforward

106

Logarithmic complexity

Amortized only:
Theorem A sequence of n insert, del_min and meld
operations runs in time O(n * logn).

—

Average cost of each operation is O(logn)
(even in the worst case)

107

@ Priority Queues Based on Braun Trees

108

Archive of Formal Proofs

https://www.isa-afp.org/entries/Priority_
Queue_Braun.shtml

109

https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml
https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml

What is a Braun tree?

braun :: 'a tree = bool

braun () = True
braun (I, z, r) =
(|7 < || A < Suce |r| A braun I N\ braun r)

Lemma braun t = 2" < 2 % [f] + 1

110

Priority queue implementation

Implementation type: ordinary binary trees

Invariants: heap and braun

No merge — insert and del_min defined explicitly

111

msert

insert :: 'a = 'a tree = 'a tree

insert a () = ((), a, ())

insert a (I, x, r) =
(if @ < z then (insert x 1, a, l) else (insert a r, x,)

Correctness and preservation of invariant straightforward.

112

del_min ::

del_min
del_min
del_min

(let (v,

{
{
{
)

del_main

:'a tree = 'a tree

) =0
0,21 =0
l, z,)

del left l'in sift_down r y ')

113

sift_down

sift_down :: 'a tree = 'a = 'a tree = 'a tree

sift_down () a () = ((), a, ()

sift_down {({), x, ()) a () =

(if a < z then (((), , ()), a, ())

else (((), a, ()), = ()))

sift_down (ly, z1, m) a (b, 12, 1) =

(if a < a1 A a < aythen (i, m, 1), a, (b, T2, 12))

else if 21 < xp then (sift_down Iy a ry, x1, (b, 22, 12))
else (I, z1, r1), @, sift.down b a 1))

Functional correctness proofs
for deletion

including preservation of heap and braun

Many lemmas, mostly straightforward

115

Logarithmic complexity

Running time of insert, del_left and sift_down (and
therefore del_min) bounded by height

Remember: braun t = 2"9 < 2 x |¢| + 1

—

Above running times logarithmic in size

116

Sorting with priority queue

pq || = empty
pq (x#xs) = insert z (pq xs)

mins q =
(if is_empty q then []
else get_min h # mins (del_min h))

sort_pq = mins o pq

Complexity of sort: O(nlogn)
if all priority queue functions have complexity O(logn)

117

Sorting with priority queue

pq [] = empty
pq (x#xs) = insert z (pq xs)

Not optimal. Linear time possible.

118

	Binary Trees
	More Basic Functions

	Search Trees
	AVL Trees

	Priority Queues

