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Library/Tree.thy



Binary trees

datatype a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

()
(l, a, 7)

Leaf
Node l a r

In the sequel: tree = binary tree



@® Basic Functions



Tree traversal

inorder :: 'a tree = 'a list

inorder () = ||
inorder (I, x, r) = inorder | Q [z] @ inorder r

preorder :: 'a tree = 'a list

preorder () = ||
preorder (I, x, r) = x # preorder | Q preorder r

postorder :: 'a tree = 'a list

postorder () = ||
postorder (I, x, vy = postorder | Q postorder r Q [



size 2 'a tree = nat

(1 =0
(Ll =11+ 1l +1

sizel :: 'a tree = nat

[th =t +1
=
1Ol =1

(L 2, )= [l + [rh
Lemma The number of leaves in tis |{|;.

Warning: |.| and |.|; only on slides

Size
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Height

height :: 'a tree = nat

W) = 0
W({l, —. 1)) = maz (h(D) (h(r) + 1

Warning: h(.) only on slides
Lemma A(t) < [

Lemma |[f|; < 2/

11



© Interlude: Arithmetic in Isabelle
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© Interlude: Arithmetic in Isabelle
Numeric Types
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Numeric types: nat, int, real

Need conversion functions (inclusions):

mt o nat = nt
real :: nat = real
real_of_int :: nt = real

If you need type real,
import theory Complex_Main instead of Main
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Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(with theory Complex,Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples

(@::int) + (ninat) ~~ @+ intn
((n:nat) + n) = real ~~ real(n+n), real n + real n
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Numeric types: nat, int, real

Coercion in the other direction:

nat :: int = nat
floor = real = int
ceiling 1 real = int
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Overloaded arithmetic operations

Numbers are overloaded: 0, 1, 2, ... :: 'a
Basic arithmetic functions are overloaded:

op+, op—,opx:'a="a="a

—=x'a="a

Division on nat and nt:

op div, op mod :: 'a = 'a = a

Division on real: op / :: 'a = 'a = 'a
Exponentiation with nat: op ~:: 'a = nat = 'a
Exponentiation with real: op powr :: 'a = 'a = 'a
Absolute value: abs :: 'a = a
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© Interlude: Arithmetic in Isabelle

Chains of (In)Equations
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Chains of equations
Textbook proof
ty =ty (justification)
=t3  (justification)

=t, (justification)

In Isabelle:
have "#; = " (proof)
also have "... = 3" (proof)
also have "... = t," (proof)

finally have "¢, = ¢," .

" is literally three dots
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Chains of equations and inequations

Instead of = you may also use < and <.

Example

have "#; < " (proof)

also have "... = 3" (proof)
also have "... < t," (proof)

finally have "t; < t," .
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How to interpret “...

have "#; < #&" (proof)
also have "... = 3" (proof)

Here “..." is internally replaced by t,

In general, if this is the formula p t; ¢, where p is some
constant, then “..." stands for t.
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© Interlude: Arithmetic in Isabelle

Proof Automation
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Linear formulas
Only:
variables
numbers
number * variable
b
= <, <
- AV, —, —

Examples
Linear: 3xr+bxy<z—zr<z
Nonlinear: =z < z % x
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Extended linear formulas

Also allowed:

min, max

even, odd

t div n, t mod n where nis a number
conversion functions

nat, floor, ceiling, abs
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Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to solve arithmetic formulas.
e Succeeds or fails

e Decision procedure for extended linear formulas;
for types nat and int, the extended linear formulas
may also contain V and 3

e Nonlinear subformulas are viewed as (new) variables;
for example, z < z % x isviewed as z < y
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Automatic proof

of arithmetic formulas
by (simp add: algebra_simps)

The lemmas list algebra_simps helps to simplify
arithmetic formulas

It applies associativity, commutativity and
distributivity of + and x.

This may prove the formula, may make it simpler,
or may make it unreadable.

It is a decision procedure for equations over rings
(e.g. int)
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Automatic proof

of arithmetic formulas
by (simp add: field_simps)

e The lemmas list field_simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg.zx vy / (zx2),if r# 0 can be proved.
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End of interlude, back to trees . ..
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Tree.thy

¢y < 2k
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O More Basic Functions

30



Minimal height

man_height :: 'a tree = nat

mh(()) =0
mh({l, -, r)) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides
Lemma mh(t) < h(t)

Lemma 2™ < |4
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Internal path length

ipl =2 'a tree = nat

ipl () =0
ipl (I, _, vy = ipl L+ ||| + ipl v+ |r]

Why relevant?

Upper bound?
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@ Complete and Balanced Trees
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Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, _, r) =

(complete I A complete A\ h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 2"V

Lemma |t|; = 2"Y — complete t
Lemma |f|; = 2™ — complete t

Corollary — complete t = |t|; < (1)
Corollary — complete t = 2™ < |¢|;
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Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" 4 2,

In a search tree, finding the node labelled x takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |t|.

Lemma Let ¢ be a complete search tree of height h.
The average time to find a random element that is in the
tree is asymptotically & — 2 (as h approaches co):

iplt ) [t ~h — 2
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Complete tree: ipl

A problem: (h — 2) x 2" + 2 is only correct if
interpreted over type int, not nat.

Correct version:
Lemma complete t =
int (ipl t) = (int (h(1)) — 2) * 2D 4 2

We do not cover the Isabelle formalization of limits.
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Balanced tree

balanced :: 'a tree = bool
balanced t = (h(t) — mh(t) < 1)

Balanced trees have optimal height:
Lemma If balanced t N |t| < |t| then h(t) < h(t).
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Warning

e The terms complete and balanced
are not defined uniquely in the literature.

e For example,
Knuth calls complete what we call balanced.
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Chapter 2

Search Trees



@ Unbalanced BST

@ AVL Trees

©® Red-Black Trees

40



Most of the material focuses on
BSTs = binary search trees
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BSTs represent sets

Any tree represents a set:

set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, x, r) = set_tree | U {z} U set_tree r

A BST represents a set that can be searched in time

O(h(?))

Function set_tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object
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bst

bst :: 'a tree = bool

bst () = True

bst (I, a, 1) =

(bst I A\ bst T A

(V zeset_tree . x < a) N
(V z€set_tree r. a < 1))

Type 'a must be in class linorder ('a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder
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Interface

An implementation of sets of elements of type ‘a must
provide

An implementation type s
empty :: s

insert :: 'a = 's = s
delete :: 'a = 's = s

isin 2 's = 'a = bool
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Alternative interface

Instead of a set, a search tree can also implement a map
from ‘a to 'b:

An implementation type 'm
empty = 'm

update :: 'a = b = 'm = 'm
delete :: 'a = 'm = 'm
lookup :: 'm = 'a = 'b option

Sets are a special case of maps
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Comparison of elements

We assume that the element type 'a is a linear order

Instead of using < and < directly:
datatype cmp val = LT | EQ | GT

cmp Ty =
(if z < y then LT else if x = y then EQ else GT)
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@ Unbalanced BST
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Implementation

Implementation type: ‘a tree

empty = Leaf

insert T <; = ((), z, ()

insert x (I, a, r) = (case cmp z a of
LT = (insert x I, a, T)
| EQ = (I, a, 1)
| GT = (I, a, insert x 1))
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Implementation

isin () © = False
isin (I, a, ) © = (case cmp x a of
LT = isinlx
| EQ = True
| GT = isin r )
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Implementation

delete z () = ()
delete z (I, a, r) =
(case cmp x a of
LT = (delete z 1, a, 1)
| EQ = if r= () then [
else let (a’, r') = del-min rin (I, o/, 1)
| GT = (I, a, delete x 1))

del_-min (I, a, r) =
(if 1= () then (a, 1)
else let (x, I') = del.min Lin (z, (I, a, 1)))

50



@ Unbalanced BST
Correctness
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Why is this implementation
correct?

Because empty wnsert delete isin

simulate  {} U {} —{} €

set_tree empty = {}

set_tree (insert x t) = set_tree t U {x}
set_tree (delete x t) = set_tree t — {z}
isin t x = (x € set_tree t)

Under the assumption bst ¢
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Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete z t)
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@ Unbalanced BST

Correctness Proof Method Based on Sorted Lists
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sorted :: 'a list = bool

sorted [| = True
sorted [z] = True
sorted (z # y # 2s) = (x < y A sorted (y # zs))

No duplicates!
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Structural invariant

The proof method works not just for unbalanced trees.
We assume that there is some structural invariant on the
search tree:

inv : 's = bool

e.g. some balance criterion.

56



Correctness of insert

inv t A\ sorted (inorder t) —>
inorder (insert x t) = ins_list x (inorder t)

where
ins_list 2 'a = 'a list = 'a list

inserts an element into a sorted list.

Also covers preservation of bst
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Correctness of delete

inv t A\ sorted (inorder t) —>
inorder (delete x t) = del_list x (inorder t)

where
del_list :: 'a = 'a list = 'a list

deletes an element from a sorted list.

Also covers preservation of bst
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Correctness of 7s1n

inv t A\ sorted (inorder t) =
isin t v = (xz € elems (inorder t))

where
elems :: 'a list = 'a set

converts a list into a set.

59



@ AVL Trees
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Data_Structures/AVL_Set.thy

61



©® Red-Black Trees
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Data_Structures/RBT_Set.thy
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Relationship to 2-3-4 trees



Red-black trees

datatype color = Red | Black

datatype
'a bt = Leaf | Node color ('a tree) 'a ('a tree)
Abbreviations:
() = Leaf
(¢, ,a,7) = Nodeclar
Rlar Node Red [ a r

Blar Node Black | a r
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Color

color :: 'a rbt = color
color () = Black

color (¢, , ., ) =c¢
paint :: color = 'a rbt = 'a rbt

paint ¢ () = ()
paint ¢ (-, I, a, 1) = (¢, |, a, 1)
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Invariants

rbt =2 'a rbt = bool
rbt t = (inve t A invh t A\ color t = Black)

inve = 'a rbt = bool

inve () = True

inve (¢, l, ., 1y =

(inve I A inve A

(¢ = Red — color | = Black N color r = Black))
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Invariants

invh :: 'a bt = bool
invh () = True
invh (_, I, -, r) = (invh I A invh r A\ bh(l) = bh(r))

bheight :: 'a rbt = nat

bh(()) = 0
bh(<cu L -, *>) -
(if ¢ = Black then bh(l) + 1 else bh(]))

68



Exercise

Is snvh what we want?

Define a function Bpl :: 'a rbt = nat set
such that Bpl t (“black path lengths") is the set of all n
such that there is a path from the root of ¢ to a leaf that

contains exactly n black nodes.
Prove invh t = Bplt = {bh(?)}
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Logarithmic height

Lemma
rbt t — h(t) < 2 % log2 |t|1
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Insertion
insert :: 'a = 'a rbt = 'a rbt
insert x t = paint Black (ins z t)

ins :: 'a = 'a rbt = 'a rbt
insz () =R () z()
ins x (Bl ar)= (case cmp = a of
LT = baliL (ins z 1) a r
| EQ= Blar
| GT = baliR [ a (ins x 1))

ins x (R 1lar) = (case cmp x a of
LT= R(inszl)ar
| EQ= Rlar
| GT = Rla(inszr))
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Adjusting colors

insx(Blar)=..bal(insxzl)ar..balla/(inszr) ..

baliL, baliR :: 'a rbt = 'a = 'a rbt = 'a bt
o Combine arguments [ a r into tree, ideally (I, a, 7)
e Treat invariant violation Red-Red in [/r
baliL (R (R tl ap tg) as tg) as t4 =
R (Bt ay ) ay (B t3 ag ty)
baliL (R tl aq (R tg as t3>) as t4 =
R (B tl ay tg) ag (B t3 as t4)
e Principle: replace Red-Red by Red-Black
e Last equation: baliL lar= Blar
e Symmetric: baliR
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Correctness via sorted lists

Lemma
inorder (baliL | a r) = inorder | @ a # inorder r
inorder (baliR | a 1) = inorder | @ a # inorder r

Lemma
sorted (inorder t) =
inorder (ins x t) = ins_list x (inorder t)

Corollary

sorted (inorder t) =
inorder (insert x t) = ins_list x (inorder t)

Proofs easy!
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Preservation of invariant

Theorem
rbt t = rbt (insert x t)
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Chapter 3

Priority Queues



© Priority Queues

@ Leftist Heap

@® Skew Heap

@ Priority Queues Based on Braun Trees
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© Priority Queues
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Priority queue informally

Collection of elements with priorities

Operations:

empty

emptiness test

insert

get element with minimal priority
delete element with minimal priority

We focus on the priorities:
element = priority
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Priority queues are multisets

The same element can be contained multiple times
in a priority queue
_—
The abstract view of a priority queue is a multiset
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Multisets in Isabelle

Import "Library/Multiset"
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Interface of implementation

The type of elements (= priorities) ’a is a linear order

An implementation of a priority queue of elements of
type 'a must provide

An implementation type ’q
empty :: 'q

is_empty :: 'qg = bool
insert :: 'a = "¢ =g
get-min :: 'qg = 'a

del_min :: ' = 'q
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More operations

e merge :: 'qg= 'g="q
Often provided

o decrease key/priority
Not easy in functional setting
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Correctness of implementation

A priority queue represents a multiset of priorities.
Correctness proof requires:

Abstraction function: mset :: ‘¢ = 'a multiset
Invariant: invar :: 'q = bool
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Correctness of implementation
Must prove invar ¢ =

mset empty = {#}

is_empty q = (mset ¢ = {#})

mset (insert © q) = mset q + {#Ha#}

mset (del-min q) = mset ¢ — {#Fget-min ¢#}

q # empty =

get-min q € set g \ (VYx € set q. get-min q < 1)
where set ¢ = set_mset (mset q)

mvar empty
invar (insert x q)
invar (del_min q)
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Terminology

A tree is a heap if for every subtree
the root is > all elements in the subtrees.

The term “heap” is frequently used synonymously with
“priority queue” .
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Priority queue via heap

empty = ()

is_empty h = (h = ())

get-min (., a, ) = a

Assume we have merge

insert a t = merge (), a, ()) t
del-min (I, a, vy = merge | r
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Priority queue via heap

A naive merge:

merge t, ty = (case (t,t) of

() =&

(- 0) =t |

(<l1,a/1,7"1>, <l2,CL2,T2>) =
if a1 < ap then (merge Iy 1y, a1, to)
else (t1, ap, merge lp o)

Challenge: how to maintaining some kind of balance
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@ Leftist Heap
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Data_Structures/Leftist_Heap.thy
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Leftist tree informally

The rank of a tree is the depth of the rightmost leaf.

In a leftist tree, the rank of every left child is > the rank
of its right sibling
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Implementation type

datatype
'a lheap = Leaf | Node nat ('a tree) 'a ('a tree)

Abbreviations () and (h, [, a, r) as usual

Abstraction function:
mset_tree :: 'a lheap = 'a multiset

mset_tree () = {#}

mset_tree (_, I, a, 1) =
{#a#} + mset_tree | + mset_tree r
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Heap

heap :: 'a lheap = bool
heap () = True
heap (_, I, a, vy = (heap I N\ heap r A
(Vz e# mset_tree | + mset_tree r. a < 1))
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Leftist tree

rank :: 'a lheap = nat

rank () = 0
rank (., , ., r) = rankr+ 1

Node (n, [, a, r): n = rank of node

ltree :: 'a lheap = bool

ltree () = True
ltree (n, I, _, r) =
(n=rank r+ 1 A rank r < rank I A ltree [ \ ltree r)
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Leftist heap invariant

invar h = (heap h A ltree h)
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Why leftist tree?

Lemma ltree t = 2"t < |t|

Lemma Execution time of merge t; t, is bounded by
rank t, + rank t
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merge

Principle: descend on the right

merge () o = t

merge t; () = 4

merge (nq, b, a1, 1) (N9, b, as, ) =

(if a1 < ay then node Iy a; (merge r1 (ng, b, ag, 1))
else node lp ay (merge rp (ny, b, a1, r1)))

node :: 'a lheap = 'a = 'a lheap = 'a lheap

node l a r=

(let rl=vrkl; rr=r1kr

inif rr < rlthen (rr+ 1, a, ) else (rl + 1, r, a, )
where 7k (n, ., ., ) =mn
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merge

merge <n17 ll) ap, T1> <n27 l27 a, T2> —
(if a; < ap then node Iy a; (merge 1 (ng, b, as, 1))
else node Iy ay (merge rp (ny, b, a1, 11)))

Function merge terminates because
decreases with every recursive call.
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Functional correctness proofs

including preservation of invar

Straightforward
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Logarithmic complexity

Complexity measures t_merge, t_insert t_del_min:
count calls of merge.

Lemma t_merge [ r < rank | 4+ rank r + 1
Lemma ltree | A ltree r —
t-merge [ r < logy || + logy |11 + 1

Lemma
ltree t = t_insert x t < logs |t|; + 2

Lemma
ltree t => t_del_min t < 2 x logy |t|; + 1
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Can we avoid the rank info in each node?
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@® Skew Heap
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Archive of Formal Proofs

https:
//www.isa-afp.org/entries/Skew_Heap.shtml
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https://www.isa-afp.org/entries/Skew_Heap.shtml
https://www.isa-afp.org/entries/Skew_Heap.shtml

Note: merge is called meld
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Ordinary binary trees

Invariant: heap

Implementation type
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meld

Principle: swap subtrees when descending

meld h1 h2 =
(case hy of
<> = hy
‘ <l1, ap, ’/’1) =
case hy of
<> =
| <l2, as, T’2> =
if ay S as then (meld hg m, ai, l1>
else (meld hl T2, G2, l2>>

Function meld terminates because . ..
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Functional correctness proofs

including preservation of heap

Straightforward
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Logarithmic complexity

Amortized only:
Theorem A sequence of n insert, del_min and meld
operations runs in time O(n * logn).

—

Average cost of each operation is O(logn)
(even in the worst case)
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@ Priority Queues Based on Braun Trees
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Archive of Formal Proofs

https://www.isa-afp.org/entries/Priority_
Queue_Braun.shtml
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https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml
https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml

What is a Braun tree?

braun :: 'a tree = bool

braun () = True
braun (I, z, r) =
(|7 < || A < Suce |r| A braun I N\ braun r)

Lemma braun t = 2" < 2 % [f] + 1
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Priority queue implementation

Implementation type: ordinary binary trees

Invariants: heap and braun

No merge — insert and del_min defined explicitly
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msert

insert :: 'a = 'a tree = 'a tree

insert a () = ((), a, ())

insert a (I, x, r) =
(if @ < z then (insert x 1, a, l) else (insert a r, x, )

Correctness and preservation of invariant straightforward.

112



del_min ::

del_min
del_min
del_min

(let (v,

{
{
{
)

del_main

:'a tree = 'a tree

) =0
0,21 =0
l, z, )

del left l'in sift_down r y ')
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sift_down

sift_down :: 'a tree = 'a = 'a tree = 'a tree

sift_down () a () = ((), a, ()

sift_down {({), x, ()) a () =

(if a < z then (((), , ()), a, ())

else (((), a, ()), = ()))

sift_down (ly, z1, m) a (b, 12, 1) =

(if a < a1 A a < aythen (i, m, 1), a, (b, T2, 12))

else if 21 < xp then (sift_down Iy a ry, x1, (b, 22, 12))
else (I, z1, r1), @, sift.down b a 1))



Functional correctness proofs
for deletion

including preservation of heap and braun

Many lemmas, mostly straightforward
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Logarithmic complexity

Running time of insert, del_left and sift_down (and
therefore del_min) bounded by height

Remember: braun t = 2"9 < 2 x |¢| + 1

—

Above running times logarithmic in size
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Sorting with priority queue

pq || = empty
pq (x#xs) = insert z (pq xs)

mins q =
(if is_empty q then []
else get_min h # mins (del_min h))

sort_pq = mins o pq

Complexity of sort: O(nlogn)
if all priority queue functions have complexity O(logn)
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Sorting with priority queue

pq [] = empty
pq (x#xs) = insert z (pq xs)

Not optimal. Linear time possible.
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