

HOL Foundations

by Arthur Grundner

HOL Foundations

● HOL is a family of proof assistants, using a
variant of higher-order logic

● HOL4 is the primary descendent, still being
actively developed on:
https://hol-theorem-prover.org/

● HOL is the predecessor of Isabelle
● HOL has its roots in the LCF formalism

LCF formalism

● In 1969, the LCF ('Logic for computable
functions') formalism was devised by Dana
Scott

● Intention: Improved reasoning about
recursively defined functions in denotational
semantics

● Denotational semantics deals with finding
mathematical objects ('domains') to explain
the behavior of computer programs

● Published in 1993

The language of the LCF formalism

● Terms: Typed λ-terms; i.e. either variables,
constants, λ-abstractions or λ-applications

● Formulae: Predicate calculus
● Types: Scott Domains

Stanford LCF

● In 1972, Milner, Diffie, Weyhrauch and Newey
developed the proof-checker LCF at Stanford
University

● It was based on the LCF formalism

Features of Stanford LCF

● ”The proof-checking program is designed to
allow the user interactively to generate formal
proofs about computable functions and
functionals over a variety of domains,
including those of interest to the computer
scientist for example, integers, lists and
computer programs and their semantics. The
user’s task is alleviated by two features: a
subgoaling facility and a powerful
simplification mechanism.“ (Robin Milner)

Shortcomings of Stanford LCF

● Storage of proofs filled up memory quickly
● Repertoire of proof commands was immutable

Edinburgh LCF

● In Edinburgh, Milner tackled the problems of
Stanford LCF

● Only result of proofs, not proofs themselves,
should be stored

● For full customizability, Milner developed a
strictly typed programming language ML
('Meta-Language')

Features of ML

● Exception handling mechanism
● Novel polymorphic type system (a term with

type variables is a single polymorphic term)
● Own abstract data type for theorems

 All theorems must have been correctly
deduced simply because of their type

Tactics

● A tactic is a function with

- Input: Goal, that needs to be proven

- Output: List of sub-goals along with a
justification function

● Notation:

● Example:
(induction)

Tacticals

● A tactical is a function, that can compose
tactics and returns a tactic.

● Example:

- Let S and T be tactics and 'THEN' a tactical.
Then 'S THEN T' applies S to some goal and
then applies T to all sub-goals produced by S

Cambridge LCF

● Gerard Huet ported Edinburgh LCF to the Lisp
dialects Le Lisp and MacLisp

● Larry Paulson then improved Huet's code
● Many features and techniques were added
● The resulting system was called Cambridge

LCF due Paulson's workplace and got ported
to Standard ML

HOL

● Mike Gordon – inspired by a theorem proved
by Robin Milner – invented a notation called
LSM ('Logic of sequential machines')

● Gordon's main interest was the formal
verification of hardware

● He then combined LSM with a version of
Cambridge LCF, encoded terms in predicate
calculus, which resulted in HOL

● Gordon used higher-order logic to be able to
adequately model hardware

From LCF to HOL

HOL's logic and novelties

● The language corresponds to that of the LCF
formalism with the difference, that types were
interpreted as sets instead of Scott Domains

● Higher-order logic admits quantification over
sets or predicates, that are nested arbitrarily
deep

● Example of a third-order term:

● Two theories form the basis of HOL (bool, ind)

The theory bool

● Contains:
- Primitive type 'bool'
- Four axioms for higher-order logic
- Three primitive constants (Equality,
Implication and Choice) and some more useful
but less important constants

● With these three constants we can define
(truth), (falsity), ¬ (negation), ∧
(conjunction), (disjunction), (universal ∨ ∀
quantification), (existential quantification) ∃
and ! (unique existence quantification)∃

The Choice- or Hilbert's ε-operator

● Let t[x] be a term of type σ → bool with a free
variable x

● εx.t[x] returns some a in σ, such that t[a] is
true. If t[a] is false for all a in σ, then εx.t[x]
denotes some unspecified element in σ

● With the Hilbert-operator, we implicitly
implement the Axiom of Choice

Examples

● denotes some unspecified number
below 5

● denotes 5
● is some unspecified number

Four axioms in bool

The theory ind

● Contains:
- Primitive type 'ind' (individuals)
- Axiom of Infinity:

● The Axiom of Infinity asserts that ind denotes
an infinite set (would be an impossible
construction in bool)

● Axioms of bool and ind sufficient for
developing standard mathematics

Inference rules in HOL

● HOL uses eight inference rules:

 - ASSUME: Assumption Introduction
 - REFL: Reflexivity
 - BETA_CONV: Beta-conversion
 - SUBST: Substitution
 - ABS: Abstraction
 - INST_TYPE: Type Instantiation
 - DISCH: Discharging an assumption
 - MP: Modus Ponens

Two inference rules

● DISCH:

● BETA_CONV:

The LCF approach in ML

● Logical inference rules are implemented as
functions

● Modus Ponens as an example:

● In ML:

HOL and Set theory - Comparison

● HOL fundamentally bases on typed higher-
order logic, more generally on type theory

HOL and Set theory - Comparison

Type Theory
- No standard formulation for typed
higher-order logic
- Functions as most basic operators, in
simply typed lambda calculus even the
only type operator
- Natural numbers defined as inductive
type with two constructors:

- Easy access to tools for indexing terms,
structuring data, checking types
- Proofs/Theorems often shorter and
simpler
- Not difficult to build set theory on top of
type theory.
- Elements can usually belong to only one
type

Set Theory
- ZFC is the foundation for mathematics
as recognized by most mathematicians.

- Natural numbers defined as nested sets
of the empty set:

- Known to most mathematicians

- Elements can belong to different sets at
the same time

Sources

[1] https://cordis.europa.eu/result/rcn/26939_en.html
[2] https://en.wikipedia.org/wiki/Michael_J._C._Gordon
[3] http://www.cl.cam.ac.uk/~lp15/papers/hol.html
[4] https://math.stackexchange.com/questions/1052118/what-are-some-examples-of-
third-fourth-or-fifth-order-logic-sentences
[5] https://en.wikipedia.org/wiki/Higher-order_logic
[6] https://hol-theorem-prover.org/hol-course.pdf
[7] HOL: A Machine Oriented Formulation of Higher Order Logic,
Mike Gordon (Pages 12, 15, 19, 20, 22 - 27)
[8] Introduction to HOL (Book) (Mike Gordon)
[9] http://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf(Chapter3)
[10] http://www.cl.cam.ac.uk/archive/mjcg/papers/holst/HolOrST.pdf
[11] The HOL System Logic [For HOL-Kananaskis], March 3, 2017
(https://sourceforge.net/projects/hol/?source=typ_redirect)
[12] https://math.stackexchange.com/questions/1290575/constructing-the-natural-
numbers-without-set-theory
[13] https://math.stackexchange.com/questions/567265/why-is-it-worth-spending-time-
on-type-theory
[14] https://en.wikipedia.org/wiki/Axiom_schema_of_replacement
[15] https://en.wikipedia.org/wiki/Simply_typed_lambda_calculus

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

