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HOL Foundations

● HOL is a family of proof assistants, using a 
variant of higher-order logic

● HOL4 is the primary descendent, still being 
actively developed on:
https://hol-theorem-prover.org/

● HOL is the predecessor of Isabelle
● HOL has its roots in the LCF formalism



  

LCF formalism

● In 1969, the LCF ('Logic for computable 
functions') formalism was devised by Dana 
Scott

● Intention: Improved reasoning about 
recursively defined functions in denotational 
semantics

● Denotational semantics deals with finding 
mathematical objects ('domains') to explain 
the behavior of computer programs

● Published in 1993



  

The language of the LCF formalism

● Terms: Typed λ-terms; i.e. either variables, 
constants, λ-abstractions or λ-applications 

● Formulae: Predicate calculus
● Types: Scott Domains



  

Stanford LCF

● In 1972, Milner, Diffie, Weyhrauch and Newey 
developed the proof-checker LCF at Stanford 
University

● It was based on the LCF formalism



  

Features of Stanford LCF

● ”The proof-checking program is designed to 
allow the user interactively to generate formal 
proofs about computable functions and 
functionals over a variety of domains, 
including those of interest to the computer 
scientist for example, integers, lists and 
computer programs and their semantics. The 
user’s task is alleviated by two features: a 
subgoaling facility and a powerful 
simplification mechanism.“ (Robin Milner)



  

Shortcomings of Stanford LCF

● Storage of proofs filled up memory quickly
● Repertoire of proof commands was immutable



  

Edinburgh LCF

● In Edinburgh, Milner tackled the problems of 
Stanford LCF

● Only result of proofs, not proofs themselves, 
should be stored

● For full customizability, Milner developed a 
strictly typed programming language ML 
('Meta-Language')



  

Features of ML

● Exception handling mechanism
● Novel polymorphic type system (a term with 

type variables is a single polymorphic term)
● Own abstract data type for theorems

   All theorems must have been correctly      
deduced simply because of their type 



  

Tactics

● A tactic is a function with

- Input: Goal, that needs to be proven

- Output: List of sub-goals along with a 
justification function

● Notation:

● Example:
(induction)



  

Tacticals

● A tactical is a function, that can compose 
tactics and returns a tactic.

● Example: 

- Let S and T be tactics and 'THEN' a tactical.
Then 'S THEN T' applies S to some goal and 
then applies T to all sub-goals produced by S



  

Cambridge LCF

● Gerard Huet ported Edinburgh LCF to the Lisp 
dialects Le Lisp and MacLisp

● Larry Paulson then improved Huet's code
● Many features and techniques were added
● The resulting system was called Cambridge 

LCF due Paulson's workplace and got ported 
to Standard ML



  

HOL

● Mike Gordon – inspired by a theorem proved 
by Robin Milner – invented a notation called 
LSM ('Logic of sequential machines')

● Gordon's main interest was the formal 
verification of hardware

● He then combined LSM with a version of 
Cambridge LCF, encoded terms in predicate 
calculus, which resulted in HOL

● Gordon used higher-order logic to be able to 
adequately model hardware



  

From LCF to HOL



  

HOL's logic and novelties

● The language corresponds to that of the LCF 
formalism with the difference, that types were 
interpreted as sets instead of Scott Domains

● Higher-order logic admits quantification over 
sets or predicates, that are nested arbitrarily 
deep

● Example of a third-order term:

● Two theories form the basis of HOL (bool, ind)



  

The theory bool

● Contains:
- Primitive type 'bool'
- Four axioms for higher-order logic
- Three primitive constants (Equality, 
Implication and Choice) and some more useful 
but less important constants 

● With these three constants we can define  
(truth),    (falsity), ¬ (negation),  ∧
(conjunction),  (disjunction),  (universal ∨ ∀
quantification),  (existential quantification) ∃
and ! (unique existence quantification)∃



  

The Choice- or Hilbert's ε-operator  

● Let t[x] be a term of type σ → bool with a free 
variable x

● εx.t[x] returns some a in σ, such that t[a] is 
true. If t[a] is false for all a in σ, then εx.t[x] 
denotes some unspecified element in σ

● With the Hilbert-operator, we implicitly 
implement the Axiom of Choice

 



  

Examples

●                denotes some unspecified number 
below 5

●                                   denotes 5
●                     is some unspecified number



  

Four axioms in bool



  

The theory ind

● Contains:
- Primitive type 'ind' (individuals)
- Axiom of Infinity:
  

● The Axiom of Infinity asserts that ind denotes 
an infinite set (would be an impossible 
construction in bool)

● Axioms of bool and ind sufficient for 
developing standard mathematics



  

Inference rules in HOL

● HOL uses eight inference rules: 

 - ASSUME: Assumption Introduction
 - REFL: Reflexivity
 - BETA_CONV: Beta-conversion
 - SUBST: Substitution 
 - ABS: Abstraction
 - INST_TYPE: Type Instantiation
 - DISCH: Discharging an assumption 
 - MP: Modus Ponens

 



  

Two inference rules

● DISCH:

● BETA_CONV:



  

The LCF approach in ML

● Logical inference rules are implemented as 
functions

● Modus Ponens as an example:

● In ML:



  

HOL and Set theory - Comparison

● HOL fundamentally bases on typed higher-
order logic, more generally on type theory



  

HOL and Set theory - Comparison

Type Theory
- No standard formulation for typed 
higher-order logic
- Functions as most basic operators, in     
simply typed lambda calculus even the 
only type operator
- Natural numbers defined as inductive 
type with two constructors:

- Easy access to tools for indexing terms, 
structuring data, checking types
- Proofs/Theorems often shorter and 
simpler
- Not difficult to build set theory on top of 
type theory.
- Elements can usually belong to only one 
type

Set Theory
- ZFC is the foundation for mathematics 
as recognized by most mathematicians. 

- Natural numbers defined as nested sets 
of the empty set: 

- Known to most mathematicians

- Elements can belong to different sets at 
the same time
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