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1 Introduction

When formal logics are worked with, the question whether or not a particular formula is
a tautology (informally speaking: true in all cases) or in contrast unsatisfiable (false in all
cases) is oftentimes of interest. One way to find an answer to that question is by use of the
tableau calculus.

The basic concept of the so-called semantic tableau was first introduced by Evert William
Beth in 1955 and further developed by Raymond Smullyan into analytic tableau. This paper
will mostly be focused on the latter, as it is the most commonly used version of tableau and
the method that the majority of tableau-based provers are based on.

Though not as popular as resolution/DPLL, with which the tableau method shares simi-
larities, there have been many advancements concerning tableaux. Apart from propositional
logic and first-order logic as presented here, the method has been adapted to work with
other logics, particularly description logics or modal logics. Accordingly, the applications of
tableaux are not just in theoretical fields, but in many other areas where automated reason-
ing and knowledge representation come into play, for example Computational Linguistics.

After presenting tableaux as a proof calculus in principle, more concrete approaches for
constructing tableau proofs in propositional and first-order logic will be explained. Further,
some flaws of the proof methods will be explained and some heuristics frequently used to
combat those problems discussed.

2 Fundamentals of Tableaux

Similarly to the better known technique of resolution, tableaux are refutation systems appli-
cable to various logics, i.e. they are used to search for a proof of validity for a given formula
X by assuming its non-validity and deriving a contradiction from the negated formula ¬X.

A tableau proof is done by constructing a tree (called tableau) of which the nodes are
labeled by formulas of the corresponding logic. In particular, every proof is begun with
a tree consisting of a single node (labeled ¬X) and then expanded by applying so-called
Tableau Expansion Rules that deduce simpler subformulas of X, possibly constructing mul-
tiple branches in the process. A branch in this context should be thought of as a path
from root to leaf where every branch is set up to represent an alternate way of making
the supplied formula true. Fitting in [4] also points out how more technically speaking, a
branch can be thought of as a conjunction of the formulas on it, and the whole tableau as
a disjunction of all of its branches.

When both a formula and its negation or alternatively the falsum (⊥) appear on the same
branch, a contradiction has been found and that branch is called closed. A succesful tableau
proof results in a closed tableau, which is simply defined as a tableau of which all branches
are closed.

The validity of tableaux as a proof calculus depends on if it is both sound, i.e. proves
tautologies only, and complete, i.e. proves all tautologies. In the name of simplicity, only
conceptual/intuitive arguments will be given here - the more formal and detailed proofs
from which the following have been derived can be found in [4] and [18].
Soundness. The proposition that X is true under any valuation or truth assignment v

within the used logic (and therefore is a tautology) is equivalent to ¬X being false under
any v (hence: is not satisfiable). A tableau succeeds in showing the latter as it only closes
if a contradiction is found on every branch, which based on the interpretation of branches
given before means that satisfiability is not feasible.
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Completeness. Completeness for tableau can be proven using contraposition, i.e. rather
than showing ”X tautology =⇒ X has corresponding closed tableau”, the proof shows
that ”X has no corresponding closed tabluea =⇒ X is no tautology”, and is largely based
on the concept of consistency. In short, a formula without a closed tableau is called tableau
consistent which in particular means that the formula is satisfiable. Intuitively, this seems
sensible: a tableau is constructed by deriving subformulas, of which the satisfiability is
based on the satisfiability of the original formula. As for the argument for completeness, a
formula X having no tableau proof implies that ¬X has no closed tableau and is therefore
satisfiable, which means that X cannot be a tautology.

3 Propositional Tableaux

3.1 Propositional Logic

A propositional formula is either atomic or constructed from subformulas. An atomic for-
mula is either a logical constant (>, ⊥) or a propositional letter (p, q, . . . ) to which a truth
value can be assigned. Valid compositions of propositional formulas may use negation (¬)
or binary connectives: conjunction (∧), disjunction (∨), implication (⊃ /→), etc with their
usual semantics.

With his advance of the tableau method in [18], Smullyan introduced the concept of a
uniform or unified notation. He categorized formulas that were constructed using binary
connectives as either conjunctive or disjunctive and referred to them as α- and β-formulas
respectively. This categorization is based on the fact that every formula X ◦ Y or ¬(X ◦ Y )
is equivalent to either one of

α ≡ α1 ∧ α2

β ≡ β1 ∨ β2

in which the subformulas consist only of X/Y or their respective negations. In fact, the
expressions on the right-hand side of these equations happen to be in negation normal form
(NNF). This normal form is characterized by the fact that the negation is only applied to
atomic formulas.

With the prospect of describing an algorithm that operates on propositional formulas, the
unified notation allows for the declaration of rules that apply to formulas of either category
in the same way, rather than explicitly stating rules for each connective.

3.2 Algorithm

A propositional tableau takes a set of propositional formulas in NNF as input. After initial-
izing the tableau, the following Tableau Expansion Rules are applied to a selected branch θ
and a non-literal formula X occurring on θ until all branches are closed:

• if X = ¬¬Z: lengthen θ by Z

• if X ∈ {¬⊥,¬>}: lengthen θ by >,⊥

• if X is an α-formula: add α1 and α2 (in that order) to θ

• if X is a β-formula: add two children to node containing X and label them with {β1}
(left) and {β2} (right)
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One can see that the α- and β-rule as defined here do indeed comply with the reasoning
behind tableau proofs. If an α-formula is assumed to be satisfiable, both α1 and α2 must be
satisfiable as well, so if either one of them contradicts another part of the original formula,
the assumption is proven to be unsatisfiable. Analogously for β-formulas: a satisfiable β-
formula implies the satisfiability of at least β1 or β2. The closure condition of a tableau
requires all branches to be closed, which specifically means that both β1 and β2 have been
proven unsatisfiable.

The condition stating whether a branch is closed (either ⊥ or both X and ¬X for some
X appear) may be restricted to atomic closure, i.e. either ⊥ or X and ¬X for some atomic
X appear. This still allows for all tautologies to be proven by the tableau as proven in [5]
while offering a termination condition that is easier to handle and verify, especially once the
algorithm is actually implemented.

The given algorithm appears as more of a general description of what is possible, as for
instance it does not specify what branch or formula a rule should be applied to. Because
of the decidability of propositional logic, applying every rule to every formula possible
eventually leads to a closed tableau if the formula in question was indeed a tautology. A
corresponding proof can be found within the completeness proof in [5]. Still, this brute-
force way is of course not the most efficient strategy and consequently, more consideration
is needed on how to best approach a tableau proof, but that topic will be covered in 5.2.

3.3 Example

To better illustrate the described algorithm, a proof for

(p ∧ q) ∨ ¬(p ∧ q) ≡ (p ∧ q) ∨ (¬p ∨ ¬q)

will be given here. By convention, edges other than those signifying the splitting of branches
are omitted.

¬((p ∧ q) ∨ (¬p ∨ ¬q))
¬(p ∧ q)
¬(¬p ∨ ¬q)

(p ∧ q)
p
q

¬p ¬q

In a first step, the α-rule is applied to derive ¬(p∧ q) and ¬(¬(p∧ q)). The double negation
in the latter may be eliminated by the first Tableau Expansion Rule, adding p ∧ q to the
branch. Using the α-rule again gives us p and q. Now only ¬(p∧ q) ≡ (¬p∨¬q) remains to
be broken down further through application of the β-rule. Both operands are added on the
left/right respectively and form a new branch, but as p and q have already been produced
before, both new branches are now closed, and thus the tableau is closed.
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4 First-Order Tableaux

4.1 First-Order Logic

The formalities of first-order logic formulas can be easily extended from those of proposi-
tional formulas. The main characteristic of FOL is that it allows for the quantification of
formulas over a specified domain, hence the introduction of universal (∀) and existential
(∃) quantifiers. In particular, a formula φ in which a variable x occurs is quantified using
∀x to express that the formula will evaluate to true if x was substituted by any element
of the domain. Analogously, ∃x expresses that the formula will evaluate to true if x was
substituted by some element of the domain. Furthermore, FOL supports predicates (con-
ventionally denoted with P,Q,R, . . . ) and functions (f, g, . . . ) of some arity n ∈ N that may
be applied to either n variables (denoted x, y, z, . . . ) or n constants (denoted a, b, c, . . . ) in
the realm of said domain to express relations or characteristics.

In contrast to propositional logic, first-order logic formulas are more complex concerning
their semantics. To give meaning to a first-order logic formula, a model must be specified
that consists of both a domain D in which the variables and constants lie and an interpre-
tation I for constants, functions and predicates. Depending on the model associated with
a specific formula, the truth value of that formula may be true or false albeit keeping its
syntactic structure. As an example,

(∀x)P (x)

evaluates to true if D = N+ and P (x) was to be interpreted as ”x is larger than 0”, but
evaluates to false if the meaning of P (x) is changed to ”x is prime”. This ambiguity that is
inherent to FOL formulas is a root for problems in FOL tableau, as the tableau calculus is
designed to analyze formulas based on their syntactic appearance only.

Before specifying the algorithm for FOL, the unified notation is expanded to include
universal (γ) and existential (δ) formulas: formulas of the form (∀xΦ) and ¬(∃x)Φ are called
universal formulas or γ-formulas, whereas formulas constructed like (∃x)Φ and ¬(∀x)Φ are
named existential or δ-formulas.

Universal Existential

γ γ(t) δ δ(t)

(∀x)Φ Φ{x/t} (∃x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t} ¬(∀x)Φ ¬Φ{x/t}

Figure 1: γ-/δ-formulas, taken from [4]

To comply with the idea of braking formulas down into subformulas, quantified formu-
las can be instantiated for concrete constants. Here, the expression Φ{x/t} indicates a
substitution of every x in Φ with t.

4.2 Algorithm

The tableaux algorithm for formulas of first-order logic is largely similar to the one for
propositional formulas. As the set of possible formulas has only been expanded by γ- and
δ-formulas, giving Tableau Expansion Rules for those cases suffices for adapting the existing
algorithm.
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For a selected formula X on a branch θ, the rules are as follows:

• if X is a γ-formula, lengthen θ by γ(t) for a closed (existing) term t

• if X is a δ-formula, lengthen θ by δ(p) for some newly introduced constant p

These rules are also easily justified. An universal formula is per definition true for any
substitution, and hence for any substitution chosen within the proof. On the other hand, an
existential formula is not necessarily true for any particular substitution but an unknown
one, which is why a new constant is used as parameter when instantiating a δ-formula. The
latter procedure is a simplified version of a technique known as Skolemization, in which
existentially quantified variables are replaced by a term that depends on the universally
quantified variables in the relevant scope.

Once again, the rules are non-deterministic and in FOL can even lead to non-termination,
especially if every possible rule application is executed. This is especially true as in the
propositional case, the validity of a formula depends only on the truth assignments to
the propositional letters or more precisely, the definite values held by the atomic formulas.
Hence, it can be determined solely from the syntactic structure of the formula. FOL formulas
however depend in that respect on underlying models of the predicates and their domains
as well, and therefore all possible substitutions are implicitly considered. Theoretically, the
δ-rule can be used to introduce infinitely many new parameters that can then be used as
substitute in any γ-formulas present, creating a potentially endless tableau, as for example:

(∃x)P (x)
(∀y)Q(y)
P (a)
Q(a)
P (b)
Q(b)

...

This problem can diminished, e.g. by using Unification (in short: substituting variables
in two or more FOL formulas in a way that makes the formulas equivalent) or the Universal
Formulae heuristic presented in 5.3. Moreover, it is often reasonable to apply δ-formulas
first and then use the new parameters as substitutes in universal formulas.

Apart from that, FOL in contrast to propositional logic is only semi-decidable, so the
tableaux method may not terminate even when the mentioned restrictions are imposed. [2]
In particular, it is possible that no proof is found for either X or ¬X.

4.3 Example

Again, an exemplary proof of ((∀x)P (x) ∧R(x))→ (¬(∃y)¬P (y)) will be demonstrated.

5



¬(((∀x)P (x) ∧R(x))→ (¬(∃y)¬P (y)))
(∀x)P (x) ∧R(x)
¬¬(∃y)¬P (y)

(∃y)¬P (y)
¬P (a)

P (a) ∧R(a)
P (a)
R(a)

First, the α-rule is applied to split the implication into its premise and conclusion. After
eliminating the double negation, a new parameter a is introduced to apply the γ-rule to
(∃y)¬P (y), deriving ¬P (a). Now, the new parameter can be used in applying the δ-rule to
(∀x)P (x) ∧ R(x). Using the α-rule on the result derives P (a) and R(a), which means that
the tableau is closed as ¬P (a) has been stated before.

5 Improvements and heuristics

5.1 Problems

As mentioned earlier, the tableau algorithms for both propositional and first-order logic have
some faults concerning their efficiency and determinism. Tableau Expansion Rules may be
applied deliberately, which leaves the possibility for very efficient, but also very inefficient
or in the worst case even non-terminating proofs.

Another aspect to consider is the branching of the tableau. A large number of branches
leads to a larger search space, as every branch must be worked on individually to check for
closure. Additionally, branches permit redundancies as described in 5.2.

Apart from the branching mechanic, the rules themselves allow for redundant or repeated
appearances of the same formula. Technically, one could re-apply the same rule to the same
formula persistently. Of course, this can be easily avoided by common sense if a proof is
done by hand, but an automated version of the algorithm needs more explicit restrictions.

Nevertheless, the tableau proof method can be improved significantly with regards to
the aforementioned points. In the following sections, some simpler heuristics as well as
approaches known from DPLL (or SAT-solvers in general) that are commonly applied to
tableaux will be discussed. The given examples are mostly supposed to illustrate the ap-
proach of the heuristics in principle, the benefits of the described methods are of course
much more obvious in proofs of a larger scale.

5.2 Basic improvements

A very basic first improvement that may be introduced are some heuristics concerning the
order in which the Tableau Expansion Rules are applied or, more accurately, which kinds
of formula should be handled first in tableau proofs. Obviously, branching and especially
redundancy between branches should be reduced to a minimum, which is why Fitting [6]
proposes to exert the α-rule where possible before turning to disjunctive formulas. This
avoids scenarios in which the α-rule is applied to a conjunctive formula above the branching
point and α1/α2 have to be added to both branches respectively, which is both redundant
and space-inefficient, as seen in the following examples:
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p ∨ q
r ∧ s

p
r
s

q
r
s

p ∨ q
r ∧ s
r
s

p q

Concerning FOL-tableaux, Fitting [6] advises to prioritize the use of propositional rules
and further deal with existential formulas before turning to the universal ones. The latter
is intuitively sensible, because as mentioned earlier, contradictions can often be discovered
by substituting the variable in an universal formula with a parameter that was introduced
using the δ-rule. This technique has e.g. been implemented in the HARP system [15].

Even with this guidelines about the order of rule application in place, the algorithm and
its rules themselves still allow for non-termination as they only specify what may be done
with some specific kind of formula, but do not give any restrictions concerning how to
proceed with a tableau proof on a larger scale and, in the worst case, allows the proof to
run in circles. To address this, Fitting introduces the concept of strictness [7]. A strict
tableau is characterized by the fact that on every branch, every formula is processed by the
application of a Tableau Expansion Rule once at most. In practice, this may be realized
by maintaining a list of formulas for every branch from which a formula is removed once it
has a rule applied to it. In the propositional case, this approach is particularly convenient,
as strictness may be imposed without any restrictions. Additionally, propositional tableaux
as mentioned before are guaranteed to result in closure if a proof exists and every possible
formula is applied, so strict tableaux are in fact a decision procedure for propositional logic.
For FOL tableaux, that is not exactly true, because proofs may rely on repeated applications
of the γ-rule where the universal formula is applied to different terms. An example for this
situation is the following:

...
(∀x)¬P (x)

P (a)

¬P (a)

P (b)

When strictness is imposed to the γ-rule, the right branch cannot be closed as ¬P (b) would
have to be derived, but (∀x)¬P (x) has already been used to add ¬P (a) and can therefore
not be used again. With exception of that rule however, FOL tableau proofs can still be
constructed to be strict and benefit from that approach to some extent.

Lastly, the proof method also benefits from simplifying and normalizing any derived for-
mulas. In the case of non-atomic closure, a contradiction is found only if a formulaX appears
alongside ¬X where both X are exactly identical. This approach leads to the problem that
even if a formula appears that is equivalent to ¬X, it is not identified as contradicting X.
As an example: p∨q and ¬p∧¬q appear on the same branch in a tableau. The two formulas
propose a direct contradiction as ¬p ∧ ¬q ≡ ¬(p ∨ q), but are not identified as doing so.
Thus, the branch they appear on will be built further, increasing the size of the tableau
unnecessarily. Furthermore, formulas may appear that can be simplified to either reduce
branching (p ∨ (p ∨ q) ≡ p ∨ q) or find closure earlier (p ∧ ¬p). Horrocks gives a number
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of appropriate rules for simplifying/normalizing formulas of the description logic ALC [12],
but in principle, analogous rules are applicable to propositional and first-order logic as well.

5.3 Universal Formulae

The restriction of strictness described in 5.2 cannot be applied to universally quantified
formulas. As such, there may be several applications of the γ-rule to the same formula
with different (or the same) substitutions, which significantly increases the search space. To
combat this problem, a now commonly used heuristic named Universal Formulae was first
suggested by Beckert [1]. Its approach is to identify formulas that are universally quantified
or, in other words, in which a variable x may be substituted by any constant (universal
formula with respect to x). A placeholder X is then used to instantiate the formula for x,
signifying that if necessary, the formula may be treated as if instead of X, any appropriate
constant occurred in the formula. Beckert notes that while this is in general an undecidable
problem, many universal formulas may be found using the following rules:

• a formula that results from an application of the γ-rule is universal with respect to
the variable x if the outermost bound variable in the original formula was substituted
by x
e.g.: (∃y)P (X) → ¬P (y) that was derived from (∀x)(∃y)P (x) → ¬P (y) is universal
with respect to X

• a formula that results from an application of either the α-rule or the γ-rule to a formula
that is universal with respect to x is also universal with respect to the same x
e.g.: with P (X)∧ P (y) being universal with respect to X, the same is true for P (X)
as it is a result of applying the α-rule

Once such a formula has been found, it can be used analogously to the version with
the substituted variable, i.e. further Tableau Expansion Rules may be applied and closing
branches recognized, but without generating specified formulas for every time it is used.

As an example, here is a proof for (∀x)P (x)→ (P (a) ∧ P (b)):

¬((∀x)P (x)→ (P (a) ∧ P (b)))
(∀x)P (x)

¬(P (a) ∧ P (b))
P (X)

¬P (a) ¬P (b)

In this case, the X in P (X) signifies that P (X) is an universal formula where X may
be implicitly substituted with existing terms as needed. That way, P (X) can be used with
both ¬P (a) and ¬P (b) to close the respective branches.

Posegga and Schmitt [16] compare the performance of a tableau-based prover written in
Prolog with and without a simple implementation of Universal Formulae. They came to the
conclusion that while in some cases, the version with the heuristic is admittedly slower and
creates an overhead, it may also yield exponentially faster proofs or permit proofs that are
not possible altogether without the heuristic.
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5.4 Semantic Branching

Both the heuristics concerning the order of Tableau Expansion Rule applications and the
Universal Formulae heuristic reduce redundant formulas to an extent. Even so, redundan-
cies occur on a more abstract level based on the semantics of disjunctions, as pointed out
by Giunchiglia and Sebastiani [9]. The two subformulas β1 and β2 of any β-formula are
mutually consistent, i.e. satisfiability of one does not necessarily imply unsatisfiability of
the other. For that reason, testing both for satisfiability is likely to implicitly examine truth
assignments multiple times.

The basic tableau procedure performs so-called syntactic branching by adding either
operand of the disjunction as a child node to the tableau. Instead of the traditional β-
rule, Guinchiglia/Sebastiani propose the use of semantic branching, in which after the left
branch with β1 has lead to closure, ¬β1 is assumed. This method is based on a similar
idea in the DPLL algorithm, where variables are assigned a truth value and if the resulting
formula proves to be unsatisfiable, are assigned the opposite truth value.

To illustrate this heuristic, a proof for (p ∨ q) ∧ (p ∨ r)→ p ∨ (q ∧ r) will be discussed:

¬((p ∨ q) ∧ (p ∨ r)→ p ∨ (q ∧ r))
(p ∨ q) ∧ (p ∨ r)
¬(p ∨ (q ∧ r))

p ∨ q
p ∨ r
¬p

¬(q ∧ r)

p q
r

¬q ¬r

The main point in this proof is that after p lead to closure on the left-most branch and
p ∨ r would be added to the right branch, p = ⊥ is already assumed. Instead of branching
under q in the right branch into p and r from the formula p∨r above, r can simply be added
as r = > is now the only possibility for p ∨ r to be satisfiable.

5.5 Boolean Constraint Propagation

Similarly to semantic branching, Boolean Constraint Propagation (BCP) or unit propagation
is a technique that was adapted from DPLL to optimize tableau proofs. In the DPLL
algorithm ([3]), the so-called one-literal rule states that the last remaining literal in a clause
(or disjunction) of which all other literals have been removed (i.e. been assigned the truth
value ⊥) may automatically assigned the truth value >.

Freeman described the use of this approach for propositional tableaux [8] and it has since
been employed in different tableau-based reasoning systems such as FaCT [11] or SAGA [10].
With tableaux, unnecessary branching is avoided by screening every disjunction for formulas
that have already been proven unsatisfiable. If all but one operand of the disjunction are
unsatisfiable, the corresponding branch is lengthened by said operand only. The β-rule is
now only needed if more than one operand of the disjunction is still possibly satisfiable.
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As for determining whether a formula is proven unsatisfiable, this can be derived from the
semantics behind tableau proofs. An atomic formula is deemed unsatisfiable if its negation
occurs on the same branch as itself and is thus directly contradicted. α- and β-formulas on
the other hand are often contradicted only implicitly, as in: both of their subformulas have
been contradicted/proven unsatisfiable, and thus their composition.

¬(((p ∨ q) ∨ (p ∨ r))→ (p ∨ q ∨ r))
(p ∨ q) ∨ (p ∨ r)
¬(p ∨ q ∨ r)
¬p
¬q
¬r

p ∨ q

p q

p ∨ r
r

In the case of this example, BCP is successfully applied to the disjunction p ∨ r. p has
already been used to close the left branch as it contradicts ¬p and can therefore be considered
unsatisfiable. This leaves only r to be added to the branch instead of splitting it again.

5.6 MOMS

The MOMS heuristic is yet another heuristic commonly used for SAT procedures in combi-
nation with BCP. After being first proposed by Pretolani [17], it was adopted for tableaux
by Freeman [8] also. The description given here is mainly based on those of Horrocks ([12]
and [13]).

MOMS seeks to increase the effectivity of BCP by pruning the search space beforehand.
As mentioned by Hladik [10], it implicitly requires semantic branching.

When considering which disjunct to branch on when multiple disjunctions are present,
this heuristic chooses those with Maximum Occurrences in clauses of Minimum Size – hence
the name. That way, if the chosen disjunct turns out to be unsatisfiable, BCP can be used
to deduct as many formulas as possible from the disjunctions.

In practice, this decision is done by counting the occurrences of each disjunct, refining
the result e.g. by weighing them with the size of the respective disjunction ([14]).

After choosing a concrete disjunct C, the one with less occurrences of {C,¬C} is branched
on first. This is done to increase the benefits of BCP in that first branch, but leads to a
slower calculation if contradictions cannot be found. Furthermore, MOMS can hinder the
benefits of backjumping, a method in which rather than backtracking and therefore visiting
every single branching point before the contradiction in order, the most suitable point to
jump back to is calculated. Hence, some systems (e.g. FaCT) forgo it.

6 Conclusion and outlook

All in all, the tableaux calculus is a proof method that has rather simple syntax-based rules
and can be extended to first-order logic easily. Although it has some faults in principle,
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these can be mostly avoided in the propositional case and at least somewhat relieved with
FOL through heuristics, which can oftentimes be adapted from other SAT procedures.

Here only the basics of tableaux and simpler heuristics were covered, but of course much
more advanced methods have been developed as well. Many of those can be found in the
proceedings of the annual International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods.
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