
Knowledge Representation – Prolog Systems
Seminar Automated Reasoning; TUM, Summer 2020

Johannes Neubrand

June 16, 2020

Abstract
This paper was written to complement the talk of the same name held

as part of the Seminar Automated Reasoning.
It is intended to be an approachable introduction to logic program-

ming and the SLD/SLDNF calculuses paralleling the approach of [4].
The Frame Problem is introduced and some approaches per [3] are dis-
cussed. The strengths of negation as failure are considered in light of these
approaches.

Contents
Introduction 1

SLD 1
SLD Calculus . 2

Closed-world Assumption 3

SLDNF 4
Closed-world Assumption in SLDNF 5
SLDNF Calculus . 5

Prolog 6
A Simple Proof Strategy . 6

The Frame Problem 7
Approaches . 8

Explanation Closure . 8
Default Calculus . 8
Abnormality Logic . 9

Prolog and Default Logic . 9
Nonmonotonicity in Practice . 10

Conclusion 10

Appendix 11

i

Introduction
Prolog allows us to represent and reason about potentially unfinished sets of
knowledge in an intuitive way. For example, consider someone who has read a
few books about foreign sodas and learned about a particularly sweet brand,
Dr. Pepper. They like sweet sodas in general, but hate nothing more than the
taste of toothpaste. A Prolog formalization of these facts and rules is

sugary(dr_pepper).
likes(Soda) :- sugary(Soda), \+ toothpaste_undertone(Soda).

Here, :- means “is implied by”, and \+ should be read as “we cannot show”.

Based on this knowledge, Prolog infers likes(dr_pepper). When the subject
finds out that Dr. Pepper reminds them of toothpaste and extends the program
with toothpaste_undertone(dr_pepper), the earlier statement is retracted.

To better understand the properties of this form of reasoning, we will first
consider a restricted form thereof, named SLD.

SLD
SLD1 is a simple calculus that allows some reasoning about atoms connected by
rules.2

Rules describe logical relationships between literals. They correspond to tuples
(Head,Body), where Head is a literal and Body is a finite set of literals. They
can be written Head ← Body, or simply Head when Body = ∅. As in first-order
logic, literals are optionally negated atoms. Some examples of rules are:

q; p← q, r; r ← ¬s.

Read: q is true; p is true if both q and r are; r is true if s is false.

Programs are sets of rules over a set of atoms, A. LitA signifies all literals
corresponding to these atoms. A set of literals is called consistent iff it has no
complementary literals (such as a,¬a).

To make use of these simple programs, we are interested in finding the set of
literals that are “consequences” of the rules. The consequences of a program Π
are called Cn(Π).

In particular, we want such a set to be closed under Π; that is, for any rule
Head ← Body in Π where Body ⊆ X holds, Head ∈ X follows.

With this in mind, Cn(Π) is defined as the smallest set of literals over A which
is both logically closed and closed under Π. The condition of logical closure
enforces certain behavior when the program is inconsistent: for example, consider

a← b; ¬a← b; b.

It has the consequences LitA (including ¬b) since both a,¬a can be derived: as
logical closure is required, all literals can be derived from this contradiction and

1Name stems from “Linear resolution with Selection function” for “Definite clauses”, per [1]
2This section is condensed and adapted from [4].

1

thus must be elements of Cn(Π). In general, Cn(Π) is a consistent subset of
LitA iff Π is consistent—otherwise, Cn(Π) is LitA itself.

Since we are interested only in literals (not formulas), the requirement of logical
closure has no meaning outside of “exploding” when contradictions are derived.

The lack of a correspondence to first-order logic becomes obvious: [¬a; a← b]
has the single consequence {¬a}, while first-order logic may lead readers to try
and (falsely!) apply the contrapositive to obtain ¬a → ¬b and therefore the
incorrect set of consequences {¬a,¬b}. As [1] puts it, rules are “oriented”.

Cn is a monotone function: Π ⊆ Π′ ⇒ Cn(Π) ⊆ Cn(Π′). In other words, adding
rules never decreases the set of consequences.

Even if a program has infinitely many rules, each of its consequences can be
derived from a finite subset of the program.

A set of literals X is called supported by a program Π if for any literal L ∈ X,
there is a rule L ← Body ∈ Π such that Body ⊆ X. In particular, Cn(Π) is
always supported by Π if Π is consistent.

A simple way to determine Cn(Π) is by finding the least fixed-point of TΠ, which
is defined as follows:

TΠ(X) =
{
{Head | Head ← Body ∈ Π,Body ⊆ X} X consistent
LitA otherwise

TΠ(X) is the set of literals that follow from X with regards to the rules from Π.
In particular, for consistent X:

• X ⊇ TΠ(X) iff X is closed.
• X ⊆ TΠ(X) iff X is supported.

When Tn
Π(∅) = Tn+1

Π (∅) (it stabilizes), the value Tn
Π(∅) is the least fixed point

of TΠ. For finite programs, Tn
Π must always stabilize since TΠ is monotone.

SLD Calculus

The SLD calculus allows, to some extent, proofs of L
?
∈ Cn(Π). Its only axiom

is |=∅, and its inference rules are as follows:

|= G ∪B
“Success” (S) for any B ∈ Bodies(L)

|= G ∪ {L}

|=G ∪B for all B ∈ Bodies(L)
“Failure” (F) |=G ∪ {L}

Here, the set of bodies of a literal is defined as follows:

Bodies(L) := {Body | (L← Body) ∈ Π}

Intuitively expressed, a literal succeeds if some of its bodies can entirely be
shown to succeed; meanwhile, a literal fails if all of its bodies can be shown to
fail. A literal that has no bodies fails immediately.

2

For consistent programs, the success rule is both complete and sound3, while
the failure rule is incomplete, but nevertheless sound. In other words:

Use the (S) rule to show L ∈ Cn(Π) via |= {L} (say: L succeeds relative to Π).

Use the (F) rule to show L 6∈ Cn(Π) via |={L} (say: L fails relative to Π),
though it’s possible |=L cannot be shown for some non-consequences.

For instance, it is impossible to show |={p} wrt. the program [p← p].

As an example, consider the program [door_locked; ¬door_boarded_up;
door_openable ← ¬door_locked,¬door_boarded_up]. We can show:

(F) |={¬door_locked,¬door_boarded_up}
(F) |={door_openable}

The upper derivation step holds since there is no body for ¬door_locked. Un-
fortunately, though door_openable fails, ¬door_openable fails too.

Closed-world Assumption
This shortcoming of SLD means that real-world programs written for it tend to
be painfully verbose, containing many inference rules redundant under first-order
logic. Instead of simply [a← b, c], logic programmers might want to write

a← b, c; ¬a← ¬b; ¬a← ¬c.

The closed-world assumption states that, insofar as there is no reason to believe a
literal is true, it should be assumed false.[4] After introducing the notation not to
signify a literal that is not provable in this sense, one expresses the closed-world
assumption as

L← notL where L is the complementary literal of L.

The semantics of not will be explored more thoroughly in the next section. For
now, we will use Cn′ to denote the adapted definition of consequence.

For example, consider the program
door_openable← ¬door_locked.

Its consequences are ∅. After extending it with the closed-world assumption
¬door_locked← not door_locked

to obtain Π′, we can derive Cn′(Π′) = {door_openable,¬door_locked}.

Note how expanding the program with
door_locked← not¬door_locked

instead would have a markedly different effect, (the consequences would be
{door_locked}): the closed-world assumption introduces an asymmetry between
positive and negative literals.

In practice, the first form (¬A← notA for a positive literal A) finds more use.
3formally, completeness: L ∈ Cn(Π) ⇒ |= L; soundness: |= L ⇒ L ∈ Cn(Π).

3

SLDNF
SLDNF is an extension of SLD that allows for negation as failure (NF).4

Rule elements are an extended notion of literals: they are optionally wrapped
by the unary not operator. We extend programs to contain rule elements in
their rules’ bodies, and can rewrite any rule as Head ← Pos ∪ not(Neg). (not is
applied pointwise on the set Neg.)

The intent is for not to refer to negation as failure: namely, p ← not q means
that p can be derived if q cannot be.

Rules Head ← Pos ∪ not(Neg) are now applicable to a set of literals X whenever
Pos ⊆ X and Neg ∩X = ∅.

This changes the semantics of support: supported sets of literals are now those
where each literal L ∈ X is the head of a rule applicable to X.

Closure is redefined analogously: closed sets of literals are those X where the
heads of all rules applicable to X are elements of X.

Supported(X) := ∀L ∈ X. ∃Body ∈ P(X). (L← Body) ∈ Π
Closed(X) := ∀(L← Body) ∈ Π. Body ⊆ X ⇒ L ∈ X

Unfortunately, these changes fundamentally break our previous definition of
consequences, as well as our construction for Cn. Consider the program

p← not q; q ← not p.

In this instance, T 2n+1
Π (∅) = {p, q}, while T 2n

Π (∅) = ∅ for n ∈ N (when T is
adjusted analogously to the definition of applicability).

In particular, the issue is that there no longer is a smallest set of literals which
are both logically closed and closed under Π. In the previous example, {p}, {q}
are two such sets. Neither of them is smaller than the other with respect to ⊆.

In order to formalize these kinds of sets of literals, the notion of answer sets is
introduced. This is done by first defining the reduct operation ΠX

ΠX := {L← Pos | (L← Pos ∪ not(Neg)) ∈ Π,Neg ∩X = ∅} .

A set X is an answer set if it satisfies Cn(ΠX) = X as defined for SLD: X must
be the smallest set of literals both logically closed and closed relative to the
reduct ΠX .

Per this definition, all answer sets are logically closed. If they are consistent,
they are additionally closed relative to Π and supported by Π (as redefined for
SLDNF programs).

Simply requiring closure and supportedness of a set of literals does not suffice
to characterize consistent answer sets. Consider [p ← p]. The set {p} is both
closed and supported while ∅ is the only answer set.

4This section is condensed and adapted from [4].

4

Additionally, LitA is an inconsistent answer set whenever the set of rules not
using negation as failure is inconsistent as defined for SLD programs.

For programs that do not use not, there is exactly one answer set, which is the
same as Cn(Π) as defined for SLD: ΠX = Π for any such Π and arbitrary X.

Some programs, such as the example [p← not q; q ← not p] discussed above,
have multiple answer sets.

At last, Cn can be redefined as the intersection of all answer sets.

As previously hinted at, this definition is no longer monotone—in other words,
Π ⊆ Π′ 6⇒ Cn(Π) ⊆ Cn(Π′). Consider the programs:

Π ≡ a← not b
Π′ ≡ a← not b; b← not a

Though Π ⊆ Π′, it also holds that Cn(Π) = {a} 6⊆ ∅ = Cn(Π′).

Literals belonging to all answer sets are called well-founded.
Literals belonging to no answer sets are called unfounded.

Closed-world Assumption in SLDNF
Given a consistent SLD program Π with only positive head literals, applying
either operation:

• Π1: for all a ∈ A, replace literals of the form ¬a with not a;
• Π2: for all a ∈ A, add the rule ¬a← not a to Π.

results in modified programs where Cn(Π1) ∩A = Cn(Π2) ∩A.

In other words, on a program without negation as failure that has positive head
literals only, replacing logical negation with negation as failure is tantamount to
adding the closed-world assumption.

SLDNF Calculus
The SLDNF calculus has the same axiom |=∅ and these inference rules:

|= G ∪B
“Success/Positive” (SP) for any B ∈ Bodies(L)

|= G ∪ {L}

|=G ∪B for all B ∈ Bodies(L)
“Failure/Positive” (FP) |=

G ∪ {L}

|= G

|={L}
“Success/Negative” (SN)

|= G ∪ {notL}

|= {L}
“Failure/Negative” (FN) |=G ∪ {notL}

5

The “Negative” pair of inference rules shows how the distinction L, notL trans-
lates rather directly to |= , |=. In fact, the following correspondence holds:

|={L} ⇔ |= {not L} |= {L} ⇔ |={not L}

Soundness is expressed with respect to the previously introduced definition of
well-founded and unfounded literals. Relative to a consistent program:

|= {L} ⇒ L is well-founded; |={L} ⇒ L is unfounded.

SLDNF is not, in general, complete—even for success. For example, the program

a← not b; b← not a; c← a; c← b

has the sole consequence {c}, but no derivation for |= {c}. For examples of
SLDNF proof trees, please see the Appendix.

Prolog
Prolog systems are logic programming systems that allow for evaluation of goals
with respect to a subset of SLDNF programs.[4]

In particular, Prolog systems generally stray from the previously introduced
definition of SLDNF calculus by disallowing logical negation.

Prolog’s syntax for SLDNF rules works according to this example:
SLDNF Prolog
a a.
a← b, not c, d a :- b, \+ c, d.

As discussed earlier, using only negation as failure as in Prolog (disallowing all
logical negation) is tantamount to using the closed-world assumption.

Prolog proofs generally allow the additional inference rule

|=G1“Thinning” (T) |=G1 ∪G2

A Simple Proof Strategy
A yet-to-be-proven or -disproven goal is denoted |= G. To prove some goal |= G:

• To process |= ∅, use the axiom to obtain |=∅.
• To process |= {L} ∪G, attempt to prove |= B ∪G ∀B ∈ Bodies(L).

– If ∀B ∈ Bodies(L). |=

B ∪G, use (FP) to derive |=

G ∪ {L}.
– If ∃B ∈ Bodies(L). |=B ∪G, use (SP) to derive |=G ∪ {L}.
(Discard any other bodies.)

• To process |= {notL} ∪G, attempt to prove |= L.
– If |=L, use (FN) to derive |=G ∪ {notL}.
– If |=L, attempt to prove G.

∗ If |=G, use (SN) to derive |=G ∪ {notL}.
∗ If |=

G, use (T) to derive |=

G ∪ {notL}.

6

As can be seen from the list, the strategy will result in a definite answer |=G or
|=G for any goal, assuming it terminates. Its results are sound.

However, it is possible that this proof strategy encounters infinite recursion, such
as when attempting to prove |= {a} on the program [a← a]. By finding some
requirement for programs that avoids this infinite recursion, one can show this
strategy to be complete for consistent programs fulfilling it. SLDNF + Thinning
and SLDNF themselves must also be complete for those programs.

One simple candidate is the existence of a measure on literals ρ : LitA → N s.t.
∀(Head ← Pos ∪ not(Neg)) ∈ Π. ∀L ∈ Pos ∪Neg. ρ(L) < ρ(Head).

Then, the depth of the call tree is finite. If there are finitely many rules, its
breadth is finite on each level as well, and the call tree is finite overall.

A further extension of SLDNF generally found in Prolog systems allows for rules
to contain variables. When this happens, the applicability of SLDNF’s positive
inference rules is based on whether the literal being operated on can be unified
with some rule’s head literal. Negative inference rules may be used only for
variable-free literals.

crown_cap(paulaner_spezi).
screw_cap(adelholzener_limo).
hard_to_grip(Bottle) :- false. % to avoid an existence_error
easy_to_open(Bottle) :- \+ crown_cap(Bottle),

\+ hard_to_grip(Bottle).

The third rule could be omitted in SLDNF, but Prolog requires all predicates
and atoms to be the head of some rule. This avoids catastrophic results of typos.

To show easy_to_open(adolholzener_limo), for instance, the first deriva-
tion step would lead to the subgoals \+ crown_cap(adelholzener_limo) and
\+ hard_to_grip(adelholzener_limo).

Note the use of nonmonotonicity: when hard_to_grip(adelholzener_limo).
is added, easy_to_open(adelholzener_limo) is no longer a consequence.

The Frame Problem
In knowledge representation, the frame problem is the issue of describing which
properties of some state can be changed by performing some action.[3] To
illustrate this, we will consider an adapted version of the Yale Shooting Scenario
based on [2].

In the following program, literals are either verbs ≈ actions, or adjectives ≈
properties of the state. The subscripts are intended as timestamps.

alive0

¬loaded0

load0

loaded1 ← load0

shoot2
¬alive3 ← loaded2, shoot2

7

(Though beyond the scope of this paper, some expressions of the frame problem
use a state × action → state transition function in lieu of linear time.)

The intended meaning of the program is that some being is alive initially (alive0),
while some gun is unloaded initially (¬loaded0). Then, our gunslinger loads the
gun, waits a bit, and finally pulls the trigger. Since they have impeccable aim,
they always hit the target, which unfortunately dies shortly after.

The fourth and sixth rules describe actions whose execution is required by the
third and fifth rules, respectively.

The issue is, how do we guarantee that exactly the intended properties are
changed by these actions? Ideally, one would like to assume that properties are
unchanged insofar as they are not affected by any action.

Adding rules akin to loaded1 ← loaded0 may seem like an option, but they often
prevent a too broad set of changes to the state. With this in mind, what more
general approaches make sense?

Approaches
Explanation Closure

When looking beyond logic programming, one could take an approach known as
explanation closure: whenever any change to the state happens, require that it is
adequately explained.[3] In first-order logic, this could manifest itself as axioms

¬loadedt ∧ loadedt+1 → loadt

loadedt ∧ ¬loadedt+1 → ⊥
¬alivet ∧ alivet+1 → ⊥

alivet ∧ ¬alivet+1 → shoott ∧ loadedt.

for arbitrary t. This approach is obviously heavily verbose, but it allows for a
clean definition of the semantics of actions. Crucially, it does not make direct
statements about when the state remains the same, instead only ensuring that
every change has an adequate explanation.

Though this approach to the frame problem is correct, it is “backwards” in a
sense: a direct translation of explanation closure statements to logic programming
yields rules that infer information about an “earlier” state from a “later” one.
No statements about the “future” can be made since pt+1 is not a head literal.

Default Calculus

To avoid explanation closure’s shortcomings, some have taken the approach of
taking the intent of solutions to the frame problem: “properties remain the same
unless acted upon.” This was rephrased it as “properties remain the same when
there is no evidence to the contrary,” and directly using that assumption.[5]

For instance: “If the gun is loaded at some time t, and if there is no evidence
that it is unloaded at time t+ 1, assume that it is loaded at time t+ 1 as well.”

The default calculus as introduced by Reiter [5] allows formalizing such relation-
ships. In it, theories can contain defaults in addition to first-order axioms.

8

P : MQ1 · · · .
R

stands for a default relating first-order formulas P,Q1, . . ., and R. The intended
meaning is “Given P ; R follows if Q1, . . . are consistent with everything else.”

Of course, everything else is hard to put into words, and risks introducing
circularity. There is nevertheless a very pragmatic notion of an extension: a set
of formulas closed under first-order derivation with the axioms and applicable
defaults.

The set of formulas entailed by the theory is the intersection of all extensions.
(This is, of course, heavily reminiscent of the relationship between SLDNF
consequences and answer sets, though the sets themselves differ heavily: LitA,
which can be finite, versus arbitrarily large first-order formulas.)

A solution to the frame problem named the frame default is described by

pt : M pt+1 for all properties p.pt+1

Abnormality Logic

The final approach treated by [3] is abnormality. As used in [2], abnormality
predicates can be used to formalize under which conditions some state propagation
rule should not apply.

Generally, the intuition is that Abs,a,t should be true if the property s could be
affected by taking action a. Its precise structure depends on the action itself.

These definitions would suffice for our modified Yale Shooting Problem:

Abalive;shoot;t ← loadedt Abloaded;load;t ← ¬loadedt

Rule 1 could be read as: “Given that loadedt, the property alivet+1 will behave
abnormally if action shoott is taken”. The closed world assumption is then added
(if we are not using NF).

The following state propagation rule is usually used:

∼xt+1 ← ¬Abx;a;t, at, ∼xt

where a is an action,
x is a property,
∼x ∈ {x,¬x}.

Prolog and Default Logic
As hinted at earlier, SLDNF rules like Head ← Pos ∪ not(Neg) correspond
roughly to defaults of the form ∧

Pos : M Neg
Head

where Neg is the pointwise complement of the literals in Neg. (In Prolog, literals
can only be positive, so Neg contains only negative literals.)

9

However, it is entirely possible to create new literals that represent these logically
negated literals. They can be made mutually exclusive in a rather strong sense:
[a← not a′; a′ ← not a], for example, ensures that a, a′ are never both elements
of a supported set, and in particular, of a consistent answer set.

Nonmonotonicity in Practice
As mentioned earlier, the consequence function Cn is not monotone in SLDNF.
In particular, adding more rules can decrease the set of derivable literals.

This fact may have seemed absurd initially. However, given the presented
approaches to the frame problem, it seems useful to allow for “beliefs” that can
be retracted as more information is available. The nonmonotonicity afforded to
us by SLDNF is uniquely useful in practice and allows application of both the
frame default and abnormality logic.

Abnormality logic in Prolog is implemented by replacing the state-propagation
rule’s use of ¬Ab with not Ab.

Abalive;shoot;t ← loadedt

alivet+1 ← not Abalive;a;t, at, alivet for all actions a

Reasoning with the frame default generally requires the usage of pseudo-
complementary literals. Our example’s propagation rules would turn into

loadedt+1 ← loadedt, not unloadedt+1

unloadedt+1 ← unloadedt, not loadedt+1

Assuming the program is consistent, this ensures that at most one of the literals
loadedt and unloadedt is a consequence of the program at any t.

Both of these examples are explored further in the first part of the Appendix.

Even logic programs that reason in paradigms not based on stateful logic can
benefit from an expanded notion of abnormality:

sugary(paulaner_spezi).
sugary(adelholzener_limo).
insect_took_a_bath_in(adelholzener_limo).
ab(Beverage) :- insect_took_a_bath_in(Beverage).
tasty(Beverage) :- sugary(Beverage), \+ ab(Beverage).

Conclusion
Those interested in the implementation of variables in Prolog should take a look
at Lifschitz’s survey [4]. The paper also includes more information about how
they relate Prolog to certain database systems, as well as a short exposé on
answer set solvers that avoid some pitfalls of SLDNF-based solution mechanisms
over logic programs with negation with failure.

For a more thorough discussion of default logic beyond negation as failure, as
well as some examples that admittedly have not aged too well, consider reading
Reiter’s article [5].

10

References
[1] Gerhard Brewka and Jürgen Dix. “Knowledge Representation with Logic

Programs.” In: Lecture Notes in Computer Science 1471: Logic Programming
and Knowledge Representation. Springer, 1997, pp. 1–51.

[2] Steve Hanks and Drew McDermott. “Default Reasoning, Nonmonotonic
Logics, and the Frame Problem.” In: AAAI-86 Proocedings. AAAI, 1986,
pp. 328–333.

[3] Vladimir Lifschitz. “The Dramatic True Story of the Frame Default.” In:
Journal of Philosophical Logic (44 2015), pp. 163–176.

[4] Vladimir Lifschitz and Hudson Turner. “Foundations of Logic Programming.”
In: Principles of Knowledge Representation. CSLI Publications, 1996, pp. 69–
127.

[5] Raymond Reiter. “A Logic for Default Reasoning.” In: Artificial Intelligence
(13 1980), pp. 81–132.

Appendix
As a more realistic example of SLDNF Calculus, we will discuss this logic program
Π that describes whether a specific person has correctly paid their taxes:

taxes_late← not paid, past_june
problematic← taxes_late, not extension_requested
problematic← lied

Or, in Prolog,

taxes_late :- \+ paid, past_june.
problematic :- taxes_late, \+ extension_requested.
problematic :- lied.

This program fulfills the requirements outlined in the section “A Simple Proof
Strategy” for programs with a strictly monotonically decreasing measure on
literals. Because of this, we can expect the proof search to terminate in all cases.

In the following, we will show proof trees for |= {problematic} for various different
programs based on this one.

First, let’s consider someone who has paid their taxes with nothing amiss.

Π ∪ {paid,past_june}

|=∅
(SP)

|= {paid}
(FN) |={not paid,past_june, not extension_requested}
(FP) |={taxes_late, not extension_requested}

(FP) |={lied}
(FP) |={problematic}

Note that removing past_june has no effect on the outer form of the search tree
using the given search strategy.

11

Now, let’s model a tax evader who already paid (an incorrect sum).

Π ∪ {paid, lied}
|=∅

(SP)
|= {paid}

(FN) |={not paid,past_june, not extension_requested}
(FP) |={taxes_late, not extension_requested}

|=∅
(SP)

|= {lied}
(SP)

|= {problematic}

The gray left-hand-side is not actually used for the (SP) inference rule, and so
this proof usually would not contain it. It’s shown here to build an intuition
about the depth-first nature of Prolog’s search strategy outlined earlier.

Next, let’s examine someone who procrastinated for a bit too long.

Π ∪ {past_june}

(FP) |={paid}

(FP) |={extension_requested} |=∅
(SN)

|= {not extension_requested}
(SP)

|= {past_june, not extension_requested}
(SN)

|= {not paid,past_june, not extension_requested}
(SP)

|= {taxes_late, not extension_requested}
(SP)

|= {problematic}

This time, the search strategy saved time since the lied-subtree was skipped.

Had this person requested an extension, the tree would instead have been:

Π ∪ {extension_requested,past_june}

(FP) |={paid}

|=∅
(SP)

|= {extension_requested}
(FN) |={not extension_requested}
(FP) |={past_june, not extension_requested}

(T) |={not paid,past_june, not extension_requested}
(FP) |={taxes_late, not extension_requested}

(FP) |={lied}
(FP) |={problematic}

Again, the gray portion is unused in the final proof tree but generated nevertheless
by the proof search.

We can also see some evidence that the Thinning rule does not strengthen
SLDNF. By rearranging the goal items, we can avoid it and simplify the tree:

Π ∪ {extension_requested,past_june}

|=∅
(SP)

|= {extension_requested}
(FN) |={not extension_requested, taxes_late}

(FP) |={lied}
(FP) |={problematic}

12

Let’s now consider the Yale Shooting Problem as described earlier, but reduced
to the final state change. (We now index the previously-second timestamp as 0.
Additionally, we no longer apply the full Prolog search process for brevity.)

First, characterizing it using abnormality logic yields:
abalive;shoot;0 ← loaded0

abloaded;load;0 ← not loaded0

loaded1 ← loaded0, load0, not abloaded;load;0

alive1 ← alive0, load0, not abalive;load;0

loaded1 ← loaded0, shoot0, not abloaded;shoot;0

alive1 ← alive0, shoot0, not abalive;shoot;0

loaded1 ← load0
alive0; loaded0; shoot0

To show |= {loaded1} and |={alive1}:

|=∅
(FP) |={abloaded;shoot;0}

(SN)
|= {not abloaded;shoot;0}

(SP)
|= {shoot0, not abloaded;shoot;0}

(SP)
|= {loaded0, shoot0, not abloaded;shoot;0}

(SP)
|= {loaded1}|=∅

(SP)
|= {loaded0}

(SP)
|= {abalive;shoot;0}

(FN) |={alive0, shoot0, not abalive;shoot;0}
(FP) |={alive0, load0, not abalive;load;0}

(FP) |={alive1}

Finally, restating this part of the Yale Shooting Problem with the frame default:5

unloaded1 ← unloaded0, not loaded1

loaded1 ← loaded0, not unloaded1

dead1 ← dead0, not alive1

alive1 ← alive0, not dead1

dead1 ← shoot0, loaded0

loaded1 ← load0
alive0; loaded0; shoot0

Assuming the past is pseudo-consistent6, the future is kept pseudo-consistent by
default rules. We can show (roots of interesting subtrees emphasized):

|=∅

(FP) |={unloaded0, not loaded1}
(FP) |={unloaded1}

(SN)
|= {not unloaded1}

(SP)
|= {loaded0, not unloaded1}

(SP)
|= {loaded1}

|=∅
(SP)

|= {shoot0}
(SP)

|= {shoot0, loaded0}
(SP)

|= {dead1}
(FN) |={alive0, not dead1}
(FP) |={alive1}

5Ordering (of rules and within rules) is far more important than in the previous program,
as we could accidentally introduce cyclical rules that cause infinite recursion to occur.

6In other words, a literal and its pseudo-complement may never both hold.

13

	Introduction
	SLD
	SLD Calculus

	Closed-world Assumption
	SLDNF
	Closed-world Assumption in SLDNF
	SLDNF Calculus

	Prolog
	A Simple Proof Strategy

	The Frame Problem
	Approaches
	Explanation Closure
	Default Calculus
	Abnormality Logic

	Prolog and Default Logic
	Nonmonotonicity in Practice

	Conclusion
	Appendix

