
Technische Universität München WS 2012/13
Institut für Informatik 30. 10. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional
construct:

datatype ifexp = Bc ′ bool | If ifexp ifexp ifexp | Less ′ aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.

2. Define a function translate, which translates ifexps to bexps. State and prove a
lemma showing that the translation is correct.

Exercise 3.2 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic
expressions. Define a corresponding evaluation relation is aval :: aexp ⇒ state ⇒ val
⇒ bool as an inductive predicate:

inductive is aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is aval .intros to prove this example lemma.

lemma “is aval (Plus (N 2) (Plus (V x) (N 3))) s (2 + (s x + 3))”

Prove that the evaluation relation is aval agrees with the evaluation function aval. Show
implications in both directions, and then prove the if-and-only-if form.

lemma aval1 : “is aval a s v =⇒ aval a s = v”
lemma aval2 : “aval a s = v =⇒ is aval a s v”
theorem “is aval a s v ←→ aval a s = v”

Homework 3.1 Compilation to Register Machine

Submission until Tuesday, November 6, 10:00am.

In this exercise, you will define a compilation function from expressions to register ma-
chines and prove that the compilation is correct.

1

The registers in our simple register machines are natural numbers:

type synonym reg = nat

The instructions are:

• “load immediate” an integer value in a register

• load the value of a variable (from the memory state) in a register

• add to a register the value of another register

datatype instr = LDI int reg | LD vname reg | ADD reg reg

Recall that a memory state is a function from variable names to integers. A register
state will be a function from registers to integers.

Complete the following definition of the function for executing an instruction given a
memory state s and a register state σ, the result being a register state. You need to add
the cases of the instruction being “load immediate” and “load”.

fun exec :: “instr ⇒ (vname ⇒ int) ⇒ (reg ⇒ int) ⇒ (reg ⇒ int)” where
“exec (ADD r1 r2) s σ = σ (r1 := σ r1 + σ r2)”

Next define the function executing a sequence of register-machine instructions, one at a
time. We have already defined for you the case of empty list of instructions. You need
to add the recursive case.

fun execs :: “instr list ⇒ (string ⇒ int) ⇒ (reg ⇒ int) ⇒ (reg ⇒ int)” where

“execs [] s σ = σ” |

We are finally ready for the compilation function. Your task is to define a function cmp
that takes an arithmetic expression a and a register r and produces a list of register-
machine instructions whose execution in any memory state and register state should lead
to a register state having in r the value of evaluating a in that memory state.

Here is the intended behavior of cmp:

• cmp (N n) r loads immediate n into r

• cmp (V x) r loads x into r

• cmp (Plus a a1) r first compiles a placing the result in r, then compiles a1 placing
the result in r + 1, and finally adds the content of r + 1 to that of r (storing the
result in r).

fun cmp :: “aexp ⇒ reg ⇒ instr list”

Finally, you need to prove the following correctness lemma, which states that our register-
machine compiler is correct, in that executing the compiled instructions of an arithmetic
expression yields (in the indicated register) the same result as evaluating the expression.

Hint: For proving correctness, you will need auxiliary lemmas stating that exec commutes
with list concatenation and that the instructions produced by cmp a r do not alter
registers below r.

lemma cmpCorrect : “execs (cmp a r) s σ r = aval a s”

2

Homework 3.2 No Uninitialized Registers

Submission until Tuesday, November 6, 10:00am.

In this exercise you will prove that the result of compiling an expression is initialization-
safe, in that no ADD operation is applied to registers that have not been previously
initialized by a “load” or “load immediate” instruction.

First we consider the following function init that takes a list of register-machine instruc-
tions and returns the set of registers that have been initialized in it.

fun init :: “instr list ⇒ reg set” where
“init [] = {}” |
“init (LDI i r # inss) = {r} ∪ init inss” |
“init (LD x r # inss) = {r} ∪ init inss” |
“init (ADD r1 r2 # inss) = init inss”

Notice that the above recursive definition uses nested patterns. Every “fun” definition
comes with a customized induction rule that observes its pattern structure: here, the
induction rule is called init .induct. Use this rule to prove that init commutes with
list concatenation. Hint: indicate the desired rule to the induct method, using rule:
init .induct.

lemma init append [simp]: “init (inss1 @ inss2) = init inss1 ∪ init inss2”

Define recursively the predicate safe with the following behavior: safe inss R holds true
iff all the registers that participate in an ADD instruction in inss either belong to R or
are previously initialized in inss.

Hint: Use a recursive definition on the first argument with the same pattern structure
as for the previous function init.

fun safe :: “instr list ⇒ reg set ⇒ bool”

Prove the following commutation lemma. Hint: As before for init, use the induction rule
customized to the definition of the function.

lemma safe append [simp]:
“safe (inss1 @ inss2) R ←→ safe inss1 R ∧ safe inss2 (R ∪ init inss1)”

Prove the following initialization-safety property, stating that in a list of instructions re-
sulted from compiling an expression all the added but not previously initialized registers
are in the empty set–i.e., there are no such registers.

lemma initSafe: “safe (cmp a r) {}”

Proof hint: You need to make a more general statement, replacing the empty set with
an arbitrary set of registers. You may also need an intermediate lemma about init and
cmp.

3

