
Technische Universität München WS 2012/13
Institut für Informatik 13. 11. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c; WHILE b1 DO c

Hint: Use the following definition for Or :

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1 ) (Not b2 ))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We want to include a com-
mand c1 OR c2, which expresses the nondeterministic choice between two commands.
That is, when executing c1 OR c2 either c1 or c2 may be executed, and it is not specified
which one.

1. Modify the datatype com to include a new constructor OR.

2. Adapt the big step semantics to include rules for the new construct.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them.

1



Homework 5.1 Nondeterminism

Submission until Tuesday, November 20, 2012, 10:00am.

Note: We will provide a template for this homework on the course webpage

In this homework, we will explore various nondeterministic commands. A nondetermistic
command may have multiple (or no) results.

We will define nondeterministic assignment (x ::= ∗), that assigns some arbitrary value
to x ; nondeterministic choice (c1 OR c2), that decides nondeterministically to execute
c1 or c2; and assumption (ASSUME b), that behaves like SKIP if b evaluates to true,
and returns no result otherwise.

In the following we provide the syntax for the new commands:

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61 ] 61 )
| Ndet vname (“ ::= ∗” [1000 ] 61 )
| Semi com com (“ ;/ ” [60 , 61 ] 60 )
| If bexp com com (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 )
| While bexp com (“ (WHILE / DO )” [0 , 61 ] 61 )
| Or com com (“ OR ” [57 ,58 ] 59 )
| ASSUME bexp

Task 1 Extend the big-step semantics by rules for the new commands:

inductive
big step :: “com × state ⇒ state ⇒ bool” (infix “⇒” 55 )

where— Add your rules here

Task 2 As a warm-up, show that OR is commutative

lemma or comm: “c1 OR c2 ∼ c2 OR c1”

A similar property also holds for chained nondeterminsitic assignments. Prove it!

lemma ndet semi comm: “x ::=∗; y ::=∗ ∼ y ::=∗; x ::=∗”

Hint: You may need an auxiliary lemma that allows you to swap updates of the state

Task 3 If-commands can be translated to assumption and nondeterministic choice as
follows:

lemma sim if or :
“ (IF b THEN c1 ELSE c2 ) ∼ ((ASSUME b; c1 ) OR (ASSUME (Not b); c2 ))”

Prove this lemma!

2



Finally, define a function that eliminates all if-commands in a given command, and prove
that it preserves the semantics:

fun cnv :: “com ⇒ com” where
lemma “cnv c ∼ c” oops

Hint: You may need auxiliary lemmas like the following one, that we have already proved
for you.

lemma sim commute while:
assumes SIM : “c∼c ′”
shows “WHILE b DO c ∼ WHILE b DO c ′”

3


