Technische Universitat Miinchen WS 2012/13
Institut fiir Informatik 13. 11. 2012
Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages

Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ~ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

N

WHILE And b1 b2 DO ¢ ~ WHILE b1 DO WHILE b2 DO ¢
3. WHILE And b1 b2 DO ¢ ~ WHILE b1 DO c¢; WHILE And b1 b2 DO ¢
4. WHILE Or b1 b2 DO ¢ ~ WHILE Or b1 b2 DO ¢; WHILE b1 DO ¢

Hint: Use the following definition for Or:

definition Or :: “bexp = bexp = bexp” where
“Or b1 b2 = Not (And (Not b1) (Not b2))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We want to include a com-
mand ¢; OR ¢, which expresses the nondeterministic choice between two commands.
That is, when executing ¢; OR cs either ¢ or ¢ may be executed, and it is not specified
which one.

. Modify the datatype com to include a new constructor OR.

N =

Adapt the big step semantics to include rules for the new construct.
Prove that ¢; OR ¢9 ~ ¢o OR c;.

Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

=W

Note: It is easiest if you take the existing theories and modify them.

Homework 5.1 Nondeterminism

Submission until Tuesday, November 20, 2012, 10:00am.
Note: We will provide a template for this homework on the course webpage

In this homework, we will explore various nondeterministic commands. A nondetermistic
command may have multiple (or no) results.

We will define nondeterministic assignment (z ::= %), that assigns some arbitrary value
to z; nondeterministic choice (¢1 OR c2), that decides nondeterministically to execute
c1 or co; and assumption (ASSUME b), that behaves like SKIP if b evaluates to true,
and returns no result otherwise.

In the following we provide the syntax for the new commands:

datatype
com = SKIP

| Assign vname aexp (“ == _711000, 61] 61)
| Ndet vname (“ =" [1000] 61)
| Semi com com (“;/ -7 [60, 61] 60)
| If bexp com com (“(IF ./ THEN _/ ELSE)” [0, 0, 61] 61)
| While bexp com (“(WHILE _/ DO .)” |0, 61] 61)
| Or com com (“. OR .7 [57,58] 59)

| ASSUME bexp

Task 1 Extend the big-step semantics by rules for the new commands:

inductive
big_step :: “com X state = state = bool” (infix “=" 55)
where— Add your rules here

Task 2 As a warm-up, show that OR is commutative

lemma or_comm: “cl OR ¢2 ~ ¢2 OR c1”

A similar property also holds for chained nondeterminsitic assignments. Prove it!
lemma ndet_semi_comm: “xi=sx; yi=* ~ yu=x; ri=x"

Hint: You may need an auxiliary lemma that allows you to swap updates of the state

Task 3 If-commands can be translated to assumption and nondeterministic choice as
follows:

lemma sim_if-or:

“(IF b THEN c1 ELSE c2) ~ ((ASSUME b; c1) OR (ASSUME (Not b); c2))”

Prove this lemma!

Finally, define a function that eliminates all if~-commands in a given command, and prove
that it preserves the semantics:

fun cnv 1 “com = com” where
lemma “cnv ¢ ~ ¢” oops

Hint: You may need auxiliary lemmas like the following one, that we have already proved
for you.

lemma sim_commute_while:
assumes SIM: “c~c'”
shows “WHILE b DO ¢ ~ WHILE b DO ¢'”

