Technische Universitat Miinchen WS 2011/12
Institut fiir Informatik 11. 12. 2012
Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages

Exercise Sheet 9

Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in
variable c.

definition MAX :: com where
For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.

lemma [simp]: “(aint)<b = maz a b = b”

lemma [simp]: “—(a:int)<b = maz a b = a”

Show that MAX satisfies the following Hoare-triple:

lemma “F {Xs. True} MAX {As. s ""¢" = maz (s "a’) (s "b")}”

Now define a program MUL that returns the product of # and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.
lemma “ {Xs. 0 < s "y"} MUL {Xs. s "z"" = s "z"" % s "'y"}”

Hints You may want to use the lemma algebra_simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon S1; S9, you first continue the proof for Sy, thus
instantiating the intermediate assertion, and then do the proof for S;. However, the first
premise of the Seg-rule is about S1. Hence, you may want to use the rotated-attribute,
that rotates the premises of a lemma:

lemmas Seq_bwd = Seq[rotated]

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX:

definition “MAX_wrong = ""a’::=N 0; ""b"::=N 0; "'¢'":=N 0”
Prove that MAX wrong also satisfies the specification for MAX:

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX:

lemma “+ {Xs. a=s "a’" A b=s ""b"'}
MAX
{As.s"¢"=mazabANa=s"a" Nb=2s"b"}”

The specification for MUL has the same problem. Fix it!

Homework 9.1 Making programs more public

Submission until Wednesday, December 18, 2012, 12:00 (noon).

In this homework, you need to define a function

fun public :: “level = com = com”

that removes all assignments to confidential variables. That is, public I ¢ should replace
all assignments = ::= a by SKIP if [< sec z. In fact, you can also remove certain IF's
and WHILEs (but please, not all of them!), which simplifies the proof below. Now show
that ¢ and public | ¢ behave the same on the variables up to I:

theorem noninterference:
“I (e,8) = s'; (public leyt) =t 0k ¢ s=t(<)]
= s'=t'(<1)”

Hint: The name of the lemma indicates that it is very similar to the noninterference
lemma in Sec_Typing. (Note however that, unlike in that lemma, here we use strict
inequality.) You may want to start with that proof and modify it where needed. A lot
of local modifications will be necessary, but the structure should remain the same. You
may also need one or two simple additional lemmas (for example ... = aval a s; =
aval a s2), but nothing major.

EXTRA CREDIT TASK: For 4 additional points, prove the following confinement
lemma, which states that the execution of an [-modified program does not affect the
variables of security level above [:

lemma confinement: “(publiclc, s) =t — secx > 1 = taz =sa”
proof (induction “public | ¢” s t arbitrary: | ¢ rule: big_step_induct)

