
Technische Universität München WS 2011/12
Institut für Informatik 11. 12. 2012

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in
variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that MAX satisfies the following Hoare-triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Now define a program MUL that returns the product of x and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints You may want to use the lemma algebra simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon S 1; S 2, you first continue the proof for S 2, thus
instantiating the intermediate assertion, and then do the proof for S 1. However, the first
premise of the Seq-rule is about S 1. Hence, you may want to use the rotated -attribute,
that rotates the premises of a lemma:

lemmas Seq bwd = Seq [rotated]

1

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong ≡ ′′a ′′::=N 0 ; ′′b ′′::=N 0 ; ′′c ′′::=N 0”

Prove that MAX wrong also satisfies the specification for MAX :

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

2

Homework 9.1 Making programs more public

Submission until Wednesday, December 18, 2012, 12:00 (noon).

In this homework, you need to define a function

fun public :: “level ⇒ com ⇒ com”

that removes all assignments to confidential variables. That is, public l c should replace
all assignments x ::= a by SKIP if l < sec x. In fact, you can also remove certain IF s
and WHILE s (but please, not all of them!), which simplifies the proof below. Now show
that c and public l c behave the same on the variables up to l :

theorem noninterference:
“ [[(c,s) ⇒ s ′; (public l c,t) ⇒ t ′; 0 ` c; s = t (< l)]]
=⇒ s ′ = t ′ (< l)”

Hint: The name of the lemma indicates that it is very similar to the noninterference
lemma in Sec Typing. (Note however that, unlike in that lemma, here we use strict
inequality.) You may want to start with that proof and modify it where needed. A lot
of local modifications will be necessary, but the structure should remain the same. You
may also need one or two simple additional lemmas (for example . . . =⇒ aval a s1 =
aval a s2), but nothing major.

EXTRA CREDIT TASK: For 4 additional points, prove the following confinement
lemma, which states that the execution of an l -modified program does not affect the
variables of security level above l :

lemma confinement : “ (public l c, s) ⇒ t =⇒ sec x ≥ l =⇒ t x = s x”
proof (induction “public l c” s t arbitrary : l c rule: big step induct)

3

