Semantics of Programming Languages

Exercise Sheet 11

Exercise 11.1 Using the VCG, Total correctness

For each of the three programs given here, you must prove partial correctness and total correctness. For the partial correctness proofs, you should first write an annotated program, and then use the verification condition generator from VC.thy. For the total correctness proofs, use the Hoare rules from HoareT.thy.

Some abbreviations, freeing us from having to write double quotes for concrete variable names:

```
abbreviation "aa \equiv "a"" abbreviation "bb \equiv "b"" abbreviation "cc \equiv "c"" abbreviation "dd \equiv "d"" abbreviation "ee \equiv "d"" abbreviation "ff \equiv "f"" abbreviation "ff \equiv "f"" abbreviation "ff \equiv "f"" abbreviation "ff \equiv "f""
```

Some useful simplification rules:

```
declare algebra_simps[simp] declare power2_eq_square[simp]
```

Rotated rule for sequential composition:

```
lemmas SeqTR = HoareT.Seq[rotated]
```

Prove the following syntax-directed conditional rule (for total correctness):

```
lemma IfT:
```

```
assumes "\vdash_t \{P1\}\ c_1\ \{Q\}" and "\vdash_t \{P2\}\ c_2\ \{Q\}" shows "\vdash_t \{\lambda s.\ (bval\ b\ s\longrightarrow P1\ s)\ \land\ (\neg\ bval\ b\ s\longrightarrow P2\ s)\}\ IF\ b\ THEN\ c_1\ ELSE\ c_2\ \{Q\}"
```

A convenient loop construct:

```
abbreviation For :: "vname \Rightarrow aexp \Rightarrow aexp \Rightarrow com \Rightarrow com" ("(FOR _/ FROM _/ TO _/ DO _)" [0, 0, 0, 61] 61) where "FOR v FROM a1 TO a2 DO c \equiv v ::= a1; WHILE (Less (V v) a2) DO (c; v ::= Plus (V v) (N 1))" abbreviation Afor :: "assn \Rightarrow vname \Rightarrow aexp \Rightarrow aexp \Rightarrow acom \Rightarrow acom" ("({_}/ FOR _/ FROM _/ TO _/ DO _)" [0, 0, 0, 0, 61] 61) where "{b} FOR v FROM a1 TO a2 DO c \equiv v ::= a1; {b} WHILE (Less (V v) a2) DO (c; v ::= Plus (V v) (N 1))"
```

Multiplication. Consider the following program MULT for performing multiplication and the following assertions $P_{-}MULT$ and $Q_{-}MULT$:

```
definition MULT2 :: com where "MULT2 \equiv FOR \ dd \ FROM \ (N \ 0) \ TO \ (V \ aa) \ DO cc ::= Plus \ (V \ cc) \ (V \ bb)" definition MULT :: com where "MULT \equiv cc ::= N \ 0 \ ; \ MULT2" definition P\_MULT :: "int \Rightarrow int \Rightarrow assn" where "P\_MULT \ ij \equiv \lambda s. \ s \ aa = i \ \land s \ bb = j \ \land 0 \le i" definition Q\_MULT :: "int \Rightarrow int \Rightarrow assn" where "Q\_MULT \ ij \equiv \lambda s. \ s \ cc = i * j \ \land s \ aa = i \ \land s \ bb = j"
```

Define an annotated program $AMULT \ i \ j$, so that when the annotations are stripped away, it yields MULT. (The parameters i and j will appear only in the loop annotations.)

Hint: The program $AMULT \ i \ j$ will be essentially MULT with an invariant annotation $iMULT \ i \ j$ at the FOR loop, which you have to define:

```
definition iMULT :: "int \Rightarrow int \Rightarrow assn" where
```

```
definition AMULT2:: "int \Rightarrow int \Rightarrow acom" where "AMULT2: j \equiv \{iMULT: ij\}
FOR \ dd \ FROM \ (N \ 0) \ TO \ (V \ aa) \ DO
cc ::= Plus \ (V \ cc) \ (V \ bb)"
```

```
definition AMULT :: "int \Rightarrow int \Rightarrow acom" where "AMULT \ i \ j \equiv (cc ::= N \ \theta) \ ; \ AMULT \ 2 \ i \ j"
```

```
\begin{array}{l} \textbf{lemmas} \ \ MULT\_defs = \\ MULT\_def \ \ MULT\_def \ \ P\_MULT\_def \ \ Q\_MULT\_def \\ iMULT\_def \ \ AMULT\_def \ \ AMULT\_def \end{array}
```

```
lemma strip\_AMULT: "strip\ (AMULT\ i\ j) = MULT"
```

Once you have the correct loop annotations, then the partial correctness proof can be done in two steps, with the help of lemma vc_sound' .

```
lemma MULT\_correct: "\vdash \{P\_MULT \ i \ j\} \ MULT \ \{Q\_MULT \ i \ j\}"
```

The total correctness proof will look much like the Hoare logic proofs from Exercise Sheet 9, but you must use the rules from HoareT.thy instead. Also note that when using rule HoareT.While', you must instantiate both the predicate $P::state \Rightarrow bool$ and the measure $f::state \Rightarrow nat$. The measure must decrease every time the body of the loop is executed. You can define the measure first:

```
definition mMULT :: "state \Rightarrow nat" where
```

```
Division. Define an annotated version of this division program, which yields the quo-
tient and remainder of aa/bb in variables "q" and "r", respectively.
definition DIV1 :: com where "DIV1 \equiv qq ::= N 0 ; rr ::= N 0"
definition DIV_IF :: com where
"DIV_{-}IF \equiv
 IF Less (V rr) (V bb) THEN SKIP
 ELSE (rr ::= N \ 0 \ ; \ qq ::= Plus \ (V \ qq) \ (N \ 1))"
definition "DIV2 \equiv rr ::= Plus (V rr) (N 1) ; DIV_IF"
definition DIV :: com  where
"DIV \equiv DIV1; FOR cc FROM (N 0) TO (V aa) DO DIV2"
lemmas DIV\_defs = DIV1\_def DIV\_IF\_def DIV2\_def DIV\_def
definition P\_DIV :: "int \Rightarrow int \Rightarrow assn" where
"P_DIV i j \equiv \lambda s. \ s \ aa = i \land s \ bb = j \land 0 \le i \land 0 < j"
definition Q_-DIV :: "int \Rightarrow int \Rightarrow assn" where
"Q_DIV \ i \ j \equiv
 \lambda \ s. \ i = s \ qq * j + s \ rr \land 0 \le s \ rr \land s \ rr < j \land s \ aa = i \land s \ bb = j"
definition iDIV :: "int \Rightarrow int \Rightarrow assn" where
definition ADIV1 :: acom  where "ADIV1 \equiv qq ::= N 0 ; rr ::= N 0 "
definition ADIV\_IF :: acom  where
"ADIV\_IF \equiv
 IF Less (V rr) (V bb) THEN ASKIP
 ELSE (rr ::= N \ 0 \ ; \ qq ::= Plus \ (V \ qq) \ (N \ 1))"
definition ADIV2 :: acom  where "ADIV2 \equiv rr ::= Plus (V rr) (N 1) ; ADIV_IF"
definition ADIV :: "int \Rightarrow int \Rightarrow acom" where
"ADIV i\ j \equiv ADIV1 ; \{iDIV\ i\ j\} FOR cc\ FROM\ (N\ 0) TO (V\ aa)\ DO\ ADIV2"
\mathbf{lemmas}\ ADIV\_defs = ADIV1\_def\ ADIV\_IF\_def\ ADIV2\_def\ ADIV\_def
lemma strip\_ADIV: "strip\ (ADIV\ i\ j) = DIV"
lemma DIV\_correct: "\vdash \{P\_DIV \ i \ j\} \ DIV \ \{Q\_DIV \ i \ j\}"
definition mDIV :: "state \Rightarrow nat" where
```

lemma $DIV_totally_correct$: " $\vdash_t \{P_DIV \ i \ j\} \ DIV \ \{Q_DIV \ i \ j\}$ "

Square roots. Define an annotated version of this square root program, which yields the square root of input aa (rounded down to the next integer) in output bb.

```
definition SQR1::com where "SQR1 \equiv bb ::= N \ 0; cc ::= N \ 1" definition SQR2::com where "SQR2 \equiv bb ::= Plus \ (V \ bb) \ (N \ 1); cc ::= Plus \ (V \ cc) \ (V \ bb); cc ::= Plus \ (V \ cc) \ (V \ bb); cc ::= Plus \ (V \ cc) \ (V \ bb); cc ::= Plus \ (V \ cc) \ (N \ 1)" definition SQR::com where "SQR \equiv SQR1; (WHILE (Not (Less (V \ aa) \ (V \ cc)))) DO SQR2)" lemmas SQR\_defs = SQR1\_def \ SQR2\_def \ SQR\_def definition P\_SQR::  "int \Rightarrow assn" where "P\_SQR \ i \equiv \lambda s. \ s \ aa = i \ \land \ 0 \le i" definition Q\_SQR::  "int \Rightarrow assn" where "Q\_SQR \ i \equiv \lambda s. \ s \ aa = i \ \land \ (s \ bb) \ 2 \le i \ \land \ i < (s \ bb + 1) \ 2"
```

Homework 11 Be Original

Submission until Tuesday, 15. 1. 2013, 10:00am.

Deadline of previous homework was extended, so polish your submission a bit!