Technische Universitat Miinchen WS 2012/13
Institut fiir Informatik 8. 1. 2013
Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Using the VCG, Total correctness

For each of the three programs given here, you must prove partial correctness and total
correctness. For the partial correctness proofs, you should first write an annotated
program, and then use the verification condition generator from VC'.thy. For the total
correctness proofs, use the Hoare rules from HoareT .thy.

Some abbreviations, freeing us from having to write double quotes for concrete variable
names:

abbreviation “aa = "a’’” abbreviation “bb = b7 abbreviation “c = ""¢'"”
abbreviation “dd = ''d""” abbreviation “ce = ""d’’” abbreviation “ff = "f'"”
abbreviation “pp = "p’’” abbreviation “gqq = 'q'’” abbreviation “rr = "'r’"”

Some useful simplification rules:

declare algebra_simps[simp] declare power2_eq_square[simp]

Rotated rule for sequential composition:
lemmas SeqTR = HoareT.Seq[rotated)

Prove the following syntax-directed conditional rule (for total correctness):

lemma IfT":
assumes “t; {P1} ¢; {Q}” and “, {P2} c2 {Q}”
shows “k; {As. (bval b s — P1s) A (- bval b s — P2 s)} IF b THEN ¢y ELSE ¢ {Q}”

A convenient loop construct:

abbreviation For :: “uname = aexp = aexp = com = com”
(“(FOR -/ FROM _/ TO _/ DO .)” [0, 0, 0, 61] 61) where
“FOR v FROM a1 TO a2 DO ¢ =
v == al ; WHILE (Less (V v) a2) DO (¢ ; v := Plus (Vv) (N 1))”

abbreviation Afor :: “assn = wvname = aexp = aexrp = acom = acom”
(“({.}/ FOR _/ FROM _/ TO _/ DO .)” [0, 0, 0, 0, 61] 61) where
“{b} FOR v FROM a1 TO a2 DO ¢ =
v u=al ; {b} WHILE (Less (V v) a2) DO (¢ ; v := Plus (Vv) (N 1))”



Multiplication. Consider the following program MULT for performing multiplication
and the following assertions P MULT and Q_MULT:

definition MULT?2 :: com where

“MULT2 =

FOR dd FROM (N 0) TO (V aa) DO
cc ::= Plus (V cc) (V bb)”

definition MULT :: com where “MULT = cc ::= N 0 ; MULT2”

definition P_.MULT :: “nt = int = assn” where
“PMULTij=MXs.saa=1iANsbb=jAN0< 7"

definition Q_MULT :: “int = int = assn” where
“Q-MULT ij=Xs.scc=1i*xjANsaa=1ANsbb=7j"

Define an annotated program AMULT i j, so that when the annotations are stripped
away, it yields MULT. (The parameters ¢ and j will appear only in the loop annotations.)

Hint: The program AMULT i j will be essentially MULT with an invariant annotation
iMULT i j at the FOR loop, which you have to define:

definition iMULT :: “int = int = assn” where

definition AMULT?2 :: “int = int = acom” where
“AMULT2 i j =
{iMULT ij}
FOR dd FROM (N 0) TO (V aa) DO
cc := Plus (V cc) (V bb)”

definition AMULT :: “int = int = acom” where
“AMULT i j = (¢c == N 0) ; AMULT2 i j7

lemmas MULT_defs =
MULT2_def MULT-def P-.MULT_def Q_-MULT_def
iMULT_def AMULT2_def AMULT_def

lemma strip AMULT: “strip (AMULT i j) = MULT”

Once you have the correct loop annotations, then the partial correctness proof can be
done in two steps, with the help of lemma vc_sound’.

lemma MULT correct: “+ {P_-MULT i j} MULT {Q_MULT i j}”

The total correctness proof will look much like the Hoare logic proofs from Exercise
Sheet 9, but you must use the rules from HoareT.thy instead. Also note that when
using rule HoareT.While’, you must instantiate both the predicate P :: state = bool
and the measure f :: state = nat. The measure must decrease every time the body of
the loop is executed. You can define the measure first:

definition mMULT :: “state = nat” where



lemma MULT totally_correct: “+y {P-MULT i j} MULT {Q-MULT i j}”

Division. Define an annotated version of this division program, which yields the quo-
tient and remainder of aa/bb in variables "¢’ and "r", respectively.

definition DIV1 :: com where “DIV1 = qq := N0 ; rr := N 0”
definition DIV_IF :: com where
“DIV_IF =
IF Less (V rr) (V bb) THEN SKIP
ELSE (rr == N 0 ; qq ::= Plus (V qq) (N 1))”
definition “DIV2 = rr ::= Plus (V rr) (N 1) ; DIV_IF”

definition DIV :: com where
“DIV = DIVI ; FOR ¢cc FROM (N 0) TO (V aa) DO DIV2”

lemmas DIV_defs = DIVI1_def DIV_IF_def DIV2_def DIV_def
definition P_DIV :: “int = int = assn” where
“PDIVij=As.saa=iANsbb=3AN0<iAN0<j
definition Q_DIV :: “int = int = assn” where
“QDIVij =
As.i=sqq*xj+srmrANO<srmrAsrmr<jANsas=1iAsbb=7j"
definition DIV :: “int = int = assn” where
definition ADIVI :: acom where “ADIVI = qq == N0 ; rr := N 07
definition ADIV_IF' :: acom where
“ADIV_IF =
IF Less (V rr) (V bb) THEN ASKIP
ELSE (rr == N0 ; qq := Plus (V qq) (N 1))”
definition ADIV2 :: acom where “ADIV2 = rr == Plus (V rr) (N 1) ; ADIV_IF”

definition ADIV :: “int = int = acom” where
“ADIV ij = ADIV1 ; {iDIV i j} FOR cc FROM (N 0) TO (V aa) DO ADIV2”

lemmas ADIV_defs = ADIVI1_def ADIV_IF_def ADIV2_def ADIV_def

lemma strip . ADIV: “strip (ADIV i j) = DIV”
lemma DIV_correct: “+ {P_-DIV ij} DIV {Q-DIV ij}”

definition mDIV :: “state = nat” where

lemma DIV_totally_correct: “F, {P_DIV ij} DIV {Q-DIV ij}”



Square roots. Define an annotated version of this square root program, which yields
the square root of input aa (rounded down to the next integer) in output bb.

definition SQRI :: com where “SQR!1 = bb := N0 ; cc :== N 1”

definition SQR2 :: com where

“SQR2 =
bb ::= Plus (V bb) (N 1);
cc = Plus (V cc) (V bb);
cc = Plus (V cc) (V bb);
cc := Plus (Vec) (N 1)”

definition SQR :: com where
“SQR = SQR1 ; (WHILE (Not (Less (V aa) (V cc))) DO SQR2)”

lemmas SQR_defs = SQRI1_def SQR2_def SQR_def
definition P_SQR :: “int = assn” where
“PSQR i =MXs. saa =1 N 0 <1

definition Q_SQR :: “int = assn” where
“Q-SQRi=Xs.saa =1 AN (sbb)"2 <iANi<(sbb+1)"2”

Homework 11 Be Original

Submission until Tuesday, 15. 1. 2013, 10:00am.

Deadline of previous homework was extended, so polish your submission a bit!



