
Technische Universität München WS 2012/13
Institut für Informatik 29. 01. 2013

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
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The following exercises are typical exam exercises. You are supposed to solve them on
a sheet of paper, without using Isabelle/HOL.

Exercise 14.1 Inductive Predicates

Consider the following inductive predicate, which characterizes odd natural numbers.

inductive odd :: “nat ⇒ bool” where
Suc 0 : “odd (Suc 0 )” |
Suc Suc: “odd n =⇒ odd (Suc (Suc n))”

Using the induction principle for the predicate odd, it can be proven that three times
any odd number is also odd:

lemma “odd n =⇒ odd (n + n + n)”
proof (induct rule: odd .induct)

First, write down precisely what subgoals remain after performing induction. How many
cases are there? Which assumptions are available, and what conclusion must be proved
in each case? Next, describe how each case can be proved. Which simplification rules or
introduction rules are used to prove each case?

Exercise 14.2 Collecting Semantics

Recall the datatype of annotated commands (type ′a acom) and the collecting semantics
(function step :: state set ⇒ state set acom ⇒ state set acom) from the lecture. We
reproduce the definition of step here for easy reference. (Recall that post c simply returns
the right-most annotation from command c.)
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step S (SKIP { }) = SKIP {S}
step S (x ::=e { }) = x ::=e {{s ′. ∃ s∈S . s ′=s(x :=aval e s)}}
step S (c1; c2) = step S c1; step (post c1) c2
step S (IF b THEN {P1} c1 ELSE {P2} c2 { }) =

IF b THEN {{s∈S . bval b s}} step P1 c1
ELSE {{s∈S . ¬ bval b s}} step P2 c2
{post c1 ∪ post c2}

step S ({I } WHILE b DO {P} c { }) =
{S ∪ post c}
WHILE b DO {{s:I . bval b s}} step P C
{{s∈I . ¬ bval b s}}

In this exercise you must evaluate the collecting semantics on the example program
below by repeatedly applying the step function.

c = (IF x < 0
THEN {A1}

{A2} WHILE 0 < y DO {A3} (y := y + x {A4}) {A5}
ELSE {A6} SKIP {A7}

) {A8}
Let S be {〈−2 ,3 〉,〈1 ,2 〉}. Calculate column n+1 in the table below by evaluating step
S c with the annotations for c taken from column n. For conciseness, we use “〈i , j 〉” as
notation for the state < ′′x ′′:=i , ′′y ′′:=j>. We have filled in columns 0 and 1 to get you
started; now compute and fill in the rest of the table.

0 1 2 3 4 5 6 7 8 9

A1 ∅ {〈−2 ,3 〉}
A2 ∅ ∅
A3 ∅ ∅
A4 ∅ ∅
A5 ∅ ∅
A6 ∅ {〈1 ,2 〉}
A7 ∅ ∅
A8 ∅ ∅

Exercise 14.3 Substitution

Recall the datatype for arithmetic expressions.
datatype aexp = N int | V vname | Plus aexp aexp

Define a function subst ::aexp ⇒ vname ⇒ aexp ⇒ aexp, such that subst a v a ′ yields
the expression a where every occurence of variable v is replaced by the expression a ′.

Moreover, define a function occurs::aexp ⇒ vname ⇒ bool such that occurs a v is true
if and only if the variable v occurs in the expression a. Prove the following:

¬ occurs a v =⇒ subst a v a ′ = a

Is the following lemma also true? Proof or counterexample!

¬occurs (subst a v a ′) v
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Homework 14 A generic abstract interpreter based on denotational semantics

Submission until Tuesday, 5. 2. 2013, 10:00am. (To be done with Isabelle/HOL again)

In this homework, you will be guided through developing a generic semantics for IMP.
Then, for two such semantics whose domain parameters are related by a concretization
function, you will prove soundness of a generic abstract interpretor.

The framework will be mostly based on the complete lattice type class, which you have
seen in the lectures and in exercise sheet 12.

Similarly to what is described in the lectures for semilattices, the complete-lattice order
and operations are extended from a type ′a to ′b ⇒ ′a componentwise. We shall be
interested in the least fixed points lfp F of monotone functionals F defined between
complete lattices of functions. lfp F is itself a monotone function:

lemma lfp pres mono:
fixes F :: “ ( ′a::complete lattice⇒ ′a) ⇒ ′a ⇒ ′a”
assumes m: “mono F” and “

∧
f . mono f =⇒ mono (F f )”

shows “mono (lfp F )”

We shall also use a binary version of monotonicity:

definition “mono2 f ≡ ∀ x1 x2 y1 y2 . x1 ≤ y1 ∧ x2 ≤ y2 −→ f x1 x2 ≤ f y1 y2”

We work with the usual datatypes for expressions and commands, save for the fact that
boolean expressions are slightly simplified:

datatype bexp = Bc bool | Less aexp aexp

As in the lectures, we shall consider a generic semantics, operating on states that store
values from an unspecified domain ′val :

type synonym ′val state = “vname ⇒ ′val”

The domain bval for booleans shall be fixed to a type slightly more flexible than bool :

datatype bval = Nothing | Tr | Fl | Any

Your first task is to organize bval as an order as follows: Tr and Fl represent the (in-
comparable) truth values, Nothing is the bottom and Any is the top:

instantiation bval :: order

bool is embeded in bval as expected:

fun BBc where “BBc True = Tr” | “BBc False = Fl”

Note that BBc is an operation on the domain of boolean values corresponding to the
syntactic Bc operator. Next, in a locale SEM, we fix operators corresponding to the
syntactic constructs for arithmetic expressions. These operators are assumed monotone.
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locale SEM =
fixes NN :: “int ⇒ ′val ::complete lattice”
and PPlus :: “ ′val ⇒ ′val ⇒ ′val”
and LLess :: “ ′val ⇒ ′val ⇒ bval”
assumes mono2 PPlus: “mono2 PPlus”
and mono2 LLess: “mono2 LLess”
begin

We now work in the context of this locale, meaning that we have available the indicated
constants for which we can use the stated assumptions. Define evaluation functions
handling variables by state lookup and mapping the synactic operators to the fixed
semantic ones (e.g., Plus to PPlus):

fun aval :: “aexp ⇒ ′val state ⇒ ′val” where
fun bval :: “bexp ⇒ ′val state ⇒ bval” where

The semantics is defined denotationally, assigning a function between states to each
command. The while case requires taking a least fixed point, via the combinator wcomb.

definition wcomb :: “ ( ′val state ⇒ bval) ⇒ ( ′val state ⇒ ′val state) ⇒ ( ′val state ⇒ ′val state)
⇒ ( ′val state ⇒ ′val state)” where
“wcomb b c w s ≡ case b s of

Nothing ⇒ bot
|Fl ⇒ s
|Tr ⇒ w (c s)
|Any ⇒ sup (w (c s)) s”

fun sem :: “com ⇒ ′val state ⇒ ′val state” where
“sem SKIP s = s”
|“sem (x ::= a) s = s(x := aval a s)”
|“sem (c1 ; c2 ) s = sem c2 (sem c1 s)”
|“sem (IF b THEN c1 ELSE c2 ) s = (case bval b s of

Nothing ⇒ bot
|Tr ⇒ sem c1 s
|Fl ⇒ sem c2 s
|Any ⇒ sup (sem c1 s) (sem c2 s))”

|“sem (WHILE b DO c) s = lfp (wcomb (bval b) (sem c)) s”

Prove that the command semantics is monotone. You will need lemmas about mono-
tonicity of the various involved operators, as well as the following, saying that wcomb
preserves monotonicity:

lemma pres mono wcomb:
assumes b: “mono b” and c: “mono c” and w : “mono w”
shows “mono (wcomb b c w)”

lemma mono sem: “mono (sem c)”

We are done with defining a parameterized generic semantics. Now we move to defining
an abstract interpretor between two semantics. The following locale fixes two generic
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semantics: a “concrete” one on domain cval, whose operator names are prefixed by “C ”,
and an “abstract” one on domain aval, whose operator names are prefixed by “A ”.

It also fixes a monotone concretization function between their domains that behaves well
w.r.t. the semantic operators. Thus, e.g., PPlus γ says that adding two abstract values
and then concretizing yields an approximation of the result of adding the concretized
values; in other words, the abstract operator A PPlus is sound (via γ) w.r.t. the concrete
operator C PPlus.

Finally, it fixes an abstraction function α that can be used to obtain, for each concrete
value, an abstract value that approximates it.

locale AI = C : SEM C NN C PPlus C LLess + A : SEM A NN A PPlus A LLess

for C NN :: “int ⇒ ′cval ::complete lattice”
and C PPlus :: “ ′cval ⇒ ′cval ⇒ ′cval”
and C LLess :: “ ′cval ⇒ ′cval ⇒ bval”

and A NN :: “int ⇒ ′aval ::complete lattice”
and A PPlus :: “ ′aval ⇒ ′aval ⇒ ′aval”
and A LLess :: “ ′aval ⇒ ′aval ⇒ bval”
+
fixes γ :: “ ′aval ⇒ ′cval”
and α :: “ ′cval ⇒ ′aval”

assumes α γ: “cv ≤ γ (α cv)”
and mono γ: “mono γ”
and NN γ[simp]: “C NN i ≤ γ (A NN i)”
and PPlus γ[simp]: “C PPlus (γ av1 ) (γ av2 ) ≤ γ (A PPlus av1 av2 )”
and LLess γ[simp]: “C LLess (γ av1 ) (γ av2 ) ≤ A LLess av1 av2”
begin

In the context of this locale, we have available all the definitions and facts from the locale
SEM for the “C ”-prefixed parameters, as well as those for the “A ”-prefixed parameters.
We defined abbreviations so that you can use the same prefixes for the defined concepts
too, e.g., C sem, A sem. For theorems, use the prefixes “C .” and “A.”.

γ is extended to states as usual:

definition γ st :: “ ′aval state ⇒ ′cval state” where “ γ st s x ≡ γ (s x )”

Prove that the abstract semantics is sound w.r.t. the concrete semantics. You will need
lemmas about soundness of the concrete evaluation operators, as well as the following
lemma which we proved for you:

lemma lfp wcomb γ:
assumes c: “mono c” and b: “mono b” and c ′: “mono c ′” and b ′: “mono b ′”
and cc ′: “c o γ st ≤ γ st o c ′” and bb ′: “b o γ st ≤ b ′”
shows “lfp (C wcomb b c) (γ st s) ≤ γ st (lfp (A wcomb b ′ c ′) s)”
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theorem soundness: “C sem c (γ st s) ≤ γ st (A sem c s)”

To get a better grasp of how the above soundness result can be used, extend α to a
function between states and prove the following theorem, showing how the concrete
semantics is approximated by the abstract semantics on the abstracted state:

definition α st :: “ ′cval state ⇒ ′aval state”

theorem soundness α: “C sem c s ≤ γ st (A sem c (α st s))”

Instantiating a locale means providing defined constants for its parameters and discharg-
ing its assumptions, in return of which one gets the theorems from the locale instantiated
to these constants. For 10 points extra credit, instantiate the locale AI as follows:

• the concrete domain consists of integer sets (with componentwise operations);

• the abstract domain is the parity domain in the complete-lattice form discussed in
exercise sheet 12.

(See the template.)
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