
Technische Universität München WS 2012/13
Institut für Informatik 05. 02. 2013

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 15

The following exercises are typical exam exercises. You are supposed to solve them on
a sheet of paper, without using Isabelle/HOL.

Exercise 15.1 Verification Condition Generation

Consider the following While-program S:

a ::= x;

WHILE 1 < a DO

a := a - 2

Your task is to show that:

|= {x ≥ 0} S {a = 0 =⇒ even x}

Find an invariant for the loop. Let Sannot be the annotated program, and Q := {a =
0 =⇒ even x} be the postcondition. Which proof obligations result when using the
verification condition generator? What does vc Sannot Q and pre Sannot Q s look like?

Exercise 15.2 Parity analysis

Now consider the following While-program:

r := 11;

a := 11 + 11;

WHILE 1 < a DO

r := r + 1;

a := a - 2;

r := a + 1

Add annotations for parity analysis to this program, and iterate on it the step′ function
until a fixed point is reached. (More precisely, let Sannot be the annotated program; you
need to compute (step′ >)0 Sannot, (step′ >)1 Sannot, (step′ >)2 Sannot, etc.) Document
the results of each iteration in a table.

1



Exercise 15.3 Abstract Interpretation: Sign Analysis

Design an abstract domain for sign analysis: For each program variable, this will calcu-
late which signs (positive, negative, or zero) it could possibly have.

Note: If a proof is done by exhaustive case distinctions that are all proven analogously,
it is enough to spell out one of the cases.

The domain of the analysis is given as follows:

none

neg zero pos

non-pos non-zero non-neg

any

Specify the concretization function γ sign, and the abstract operations num sign and
plus sign. Note that your analysis should be as precise as possible, i.e., γ sign should
not return too big concrete sets, and the abstract operations should not return too
imprecise abstract values.

Now show that you actually defined an abstract domain, i.e.

• The concretization function is monotonic,

• the concretization function maps ANY to UNIV,

• the abstract operations implement the concrete ones.

Note: In the Isabelle-formalization, these are the assumptions of locale Val abs.

Finally, you must define a measure function on the abstract domain, which can be used
to prove that the analysis always terminates. Define a function m sign and show that it
satisfies the following two properties:

• [[x v y ; ¬ y v x ]] =⇒ m sign x > m sign y

• [[x v y ; y v x ]] =⇒ m sign x = m sign y

2


