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Why Semantics?

Without semantics,
we do not really know what our programs mean.

We merely have a good intuition and a warm feeling.

Like the state of mathematics in the 19th century
— before set theory and logic entered the scene.
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Intuition is important!

• You need a good intuition to get your work done
e�ciently.

• To understand the average accounting program,
intuition su�ces.

• To write a bug-free accounting program may require
more than intuition!

• I assume you have the necessary intuition.

• This course is about “beyond intuition”.
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Intuition is not su�cient!

Writing correct language processors (e.g. compilers,
refactoring tools, . . . ) requires

• a deep understanding of language semantics,

• the ability to reason (= perform proofs) about the
language and your processor.

Example:
What does the correctness of a type checker even mean?
How is it proved?
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Why Semantics??

We have a compiler — that is the ultimate semantics!!

• A compiler gives each individual program a
semantics.

• It does not help with reasoning about the PL or
individual programs.

• Because compilers are far too complicated.

• They provide the worst possible semantics.

• Moreover: compilers may di↵er!
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The sad facts of life

• Most languages have one or more compilers.

• Most compilers have bugs.

• Few languages have a (separate, abstract)
semantics.

• If they do, it will be informal (English).
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Bugs

• Google “compiler bug”

• Google “hostile applet”
Early versions of Java had various security holes.
Some of them had to do with an incorrect
bytecode verifier.

GI Dissertationspreis 2003:
Gerwin Klein: Verified Java Bytecode Verification
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Standard ML (SML)
First real language with a mathematical semantics:
Milner, Tofte, Harper:
The Definition of Standard ML. 1990.

Robin Milner (1934–2010)
Turing Award 1991.

Main achievements: LCF (theorem proving)
SML (functional programming)
CCS, pi (concurrency)
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The sad fact of life

SML semantics hardly used:

• too di�cult to read to answer simple questions
quickly

• too much detail to allow reliable informal proof

• not processable beyond LATEX, not even executable

11



More sad facts of life

• Real programming languages are complex.

• Even if designed by academics, not industry.

• Complex designs are error-prone.

• Informal mathematical proofs of complex designs
are also error-prone.
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The solution

Machine-checked language semantics and proofs

• Semantics at least type-correct
• Maybe executable
• Proofs machine-checked

The tool:

Proof Assistant (PA)
or

Interactive Theorem Prover (ITP)
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Proof Assistants

• You give the structure of the proof

• The PA checks the correctness of each step

• Can prove hard and huge theorems

Government health warnings:

Time consuming
Potentially addictive

Undermines your naive trust in informal proofs
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Terminology

This lecture course:

Formal = machine-checked
Verification = formal correctness proof

Traditionally:

Formal = mathematical
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Two landmark verifications

C compiler
Competitive with gcc -O1

Xavier Leroy
INRIA Paris
using Coq

Operating system
microkernel (L4)

Gerwin Klein (& Co)
NICTA Sydney
using Isabelle
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A happy fact of life

Programming language researchers
are increasingly using PAs
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Why verification pays o↵

Short term: The software works!

Long term:

Tracking e↵ects of changes by rerunning proofs

Incremental changes of the software
typically require only incremental changes of the proofs

Long term much more important than short term:

Software Never Dies
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What this course is not about

• Hot or trendy PLs

• Comparison of PLs or PL paradigms

• Compilers (although they will be one application)
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What this course is about

• Techniques for the description and analysis of
• PLs
• PL tools
• Programs

• Description techniques: operational semantics

• Proof techniques: inductions

Both informally and formally (PA!)
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Our PA: Isabelle/HOL

• Developed mainly in Munich (Nipkow & Co) and
Paris (Wenzel)

• Started 1986 in Cambridge (Paulson)

• The logic HOL is ordinary mathematics

Learning to use Isabelle/HOL
is an integral part of the course

All exercises require the use of Isabelle/HOL
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Why I am so passionate
about the PA part

• It is the future

• It is the only way to deal with complex languages
reliably

• I want students to learn how to write correct proofs

• I have seen too many proofs that look more like
LSD trips than coherent mathematical arguments
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Overview of course

• Introduction to Isabelle/HOL

• IMP (assignment and while loops) and its semantics

• A compiler for IMP

• Hoare logic for IMP

• Type systems for IMP

• Program analysis for IMP
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The semantics part of the course is mostly traditional

The use of a PA is leading edge

A growing number of universities o↵er related course

25



What you learn in this course goes far beyond PLs

It has applications in compilers, security,
software engineering etc.

It is a new approach to informatics
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Part I

Programming and Proving in HOL
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs

28



Notation

Implication associates to the right:

A =) B =) C means A =) (B =) C)

Similarly for other arrows: ), �!

A1 . . . A
n

B
means A1 =) . . . =) A

n

=) B
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
• For the moment: only term = term,
e.g. 1 + 2 = 4

• Later: ^, _, �!, 8, . . .
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2 Overview of Isabelle/HOL
Types and terms
Interfaces
By example: types bool, nat and list
Summary
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Types

Basic syntax:

⌧ ::= (⌧)
| bool | nat | int | . . . base types
| 0a | 0b | . . . type variables
| ⌧ ) ⌧ functions
| ⌧ ⇥ ⌧ pairs (ascii: *)
| ⌧ list lists
| ⌧ set sets
| . . . user-defined types

Convention: ⌧ 1 ) ⌧ 2 ) ⌧ 3 ⌘ ⌧ 1 ) (⌧ 2 ) ⌧ 3)

33



Terms

Terms can be formed as follows:

• Function application:
f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin ⇡, plus x y

• Function abstraction:
�x. t
is the function with parameter x and result t,
i.e. “x 7! t”.
Example: �x. plus x x
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Terms
Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| �x. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (�x. f (g x))

Convention: f t1 t2 t3 ⌘ ((f t1) t2) t3

This language of terms is known as the �-calculus.
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The computation rule of the �-calculus is the
replacement of formal by actual parameters:

(�x. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (�x. x + 5) 3 = 3 + 5

• The step from (�x. t) u to t[u/x] is called
�-reduction.

• Isabelle performs �-reduction automatically.
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: ⌧ means “t is a well-typed term of type ⌧”.

t :: ⌧ 1 ) ⌧ 2 u :: ⌧ 1
t u :: ⌧ 2
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Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)
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Currying

Thou shalt Curry your functions

• Curried: f :: ⌧ 1 ) ⌧ 2 ) ⌧

• Tupled: f 0 :: ⌧ 1 ⇥ ⌧ 2 ) ⌧

Advantage:

Currying allows partial application
f a1 where a1 :: ⌧ 1
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Predefined syntactic sugar

• Infix: +, �, ⇤, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:
! f x + y ⌘ (f x) + y 6⌘ f (x + y) !

Enclose if and case in parentheses:
! (if then else ) !
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Isabelle text = Theory = Module

Syntax: theory MyTh
imports ImpTh1 . . . ImpTh

n

begin
(definitions, theorems, proofs, ...)⇤

end

MyTh: name of theory. Must live in file MyTh.thy

ImpTh
i

: name of imported theories. Import transitive.

Usually: imports Main
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2 Overview of Isabelle/HOL
Types and terms
Interfaces
By example: types bool, nat and list
Summary
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Proof General

An Isabelle Interface

by David Aspinall
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Proof General

Customized version of (x)emacs:

• all of emacs

• Isabelle aware (when editing .thy files)

• mathematical symbols (“x-symbols”)
(eg =) instead of ==>, 8 instead of ALL)
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isabelle jedit

Similar to ProofGeneral but

• based on jedit

•
=) easier to install

•
=) may be more familiar

• Has advantages and a few disadvantages
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Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides
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Overview_Demo.thy
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2 Overview of Isabelle/HOL
Types and terms
Interfaces
By example: types bool, nat and list
Summary
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Type bool

datatype bool = True | False

Predefined functions:
^, _, �!, . . . :: bool ) bool ) bool

A formula is a term of type bool

if-and-only-if: =
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc 0), . . .

Predefined functions: +, ⇤, ... :: nat ) nat ) nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: 0a, + ::

0a ) 0a ) 0a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z
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Nat_Demo.thy
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

• Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

• Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Suc m by IH
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Type 0a list

Lists of elements of type 0a

datatype

0a list = Nil | Cons 0a (

0a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), . . .

Syntactic sugar:

•
[] = Nil: empty list

• x # xs = Cons x xs:
list with first element x (“head”) and rest xs (“tail”)

•
[x1, . . . , xn] = x1 # . . . x

n

# []
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Structural Induction for lists

To prove that P(xs) for all lists xs, prove

• P([]) and

• for arbitrary x and xs, P(xs) implies P(x#xs).

P([])
V
x xs. P(xs) =) P(x#xs)

P(xs)
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List_Demo.thy
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An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.

• Case Nil: app (app Nil ys) zs = app ys zs =
app Nil (app ys zs) holds by definition of app.

• Case Cons x xs: We assume app (app xs ys) zs =
app xs (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

56



Large library: HOL/List.thy
Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map:

map f [x1, . . . , xn] = [f x1, . . . , f xn]

fun map :: (

0a ) 0b) ) 0a list ) 0b list where

map f [] = [] |
map f (x#xs) = f x # map f xs

Note: map takes function as argument.
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2 Overview of Isabelle/HOL
Types and terms
Interfaces
By example: types bool, nat and list
Summary
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•
datatype defines (possibly) recursive data types.

•
fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.
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Proof methods

• induction performs structural induction on some
variable (if the type of the variable is a datatype).

• auto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

“=” is used only from left to right!
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Proofs

General schema:

lemma name: "..."
apply (...)
apply (...)
...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."
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Top down proofs

Command

sorry

“completes” any proof.

Allows top down development:

Assume lemma first, prove it later.
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The proof state

1.
V

x1 . . . x
p

. A =) B

x1 . . . x
p

fixed local variables
A local assumption(s)
B actual (sub)goal
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Preview: Multiple assumptions

[[ A1; . . . ; A
n

]] =) B

abbreviates

A1 =) . . . =) A
n

=) B

; ⇡ “and”
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs

65



3 Type and function definitions
Type definitions
Function definitions
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Type synonyms

type_synonym name = ⌧

Introduces a synonym name for type ⌧

Examples:

type_synonym string = char list

type_synonym (

0a, 0b)foo =

0a list ⇥ 0b list

Type synonyms are expanded after parsing
and are not present in internal representation and output
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datatype — the general case
datatype (↵1, . . . ,↵n

)⌧ = C1 ⌧1,1 . . . ⌧1,n1

| . . .
| C

k

⌧
k,1 . . . ⌧k,nk

• Types: C
i

:: ⌧
i,1 ) · · ·) ⌧

i,ni ) (↵1, . . . ,↵n

)⌧

• Distinctness: C
i

. . . 6= C
j

. . . if i 6= j

• Injectivity: (C
i

x1 . . . xni = C
i

y1 . . . yni) =

(x1 = y1 ^ · · · ^ x
ni = y

ni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly
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Case expressions
Datatype values can be taken apart with case:

(case xs of [] ) . . . | y#ys ) ... y ... ys ...)

Wildcards:

(case m of 0 ) Suc 0 | Suc ) 0)

Nested patterns:

(case xs of [0] ) 0 | [Suc n] ) n | ) 2)

Complicated patterns mean complicated proofs!

Need ( ) in context
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Tree_Demo.thy
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The option type

datatype

0a option = None | Some 0a

If 0a has values a1, a2, . . .
then 0a option has values None, Some a1, Some a2, . . .

Typical application:

fun lookup :: (

0a ⇥ 0b) list ) 0a ) 0b option where

lookup [] x = None |
lookup ((a,b) # ps) x =

(if a = x then Some b else lookup ps x)
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3 Type and function definitions
Type definitions
Function definitions

72



Non-recursive definitions

Example:
definition sq :: nat ) nat where sq n = n⇤n

No pattern matching, just f x1 . . . x
n

= . . .
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The danger of nontermination

How about f x = f x + 1 ?

Subtract f x on both sides.
=) 0 = 1

! All functions in HOL must be total !
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Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema
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Example: separation

fun sep ::

0a ) 0a list ) 0a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs
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Example: Ackermann

fun ack :: nat ) nat ) nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

•
(Suc m, 0) > (m, Suc 0)

•
(Suc m, Suc n) > (Suc m, n)

•
(Suc m, Suc n) > (m, )
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primrec

• A restrictive version of fun

• Means primitive recursive

• Most functions are primitive recursive

• Frequently found in Isabelle theories

The essence of primitive recursion:

f(0) = . . . no recursion
f(Suc n) = . . . f(n). . .

g([]) = . . . no recursion
g(x#xs) = . . . g(xs). . .
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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4 Induction and Simplification
Induction
Simplification
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Basic induction heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f
if f is defined by recursion on argument number i
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A tail recursive reverse

Our initial reverse:

fun rev ::

0a list ) 0a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:

fun itrev ::

0a list ) 0a list ) 0a list where
itrev [] ys = ys |
itrev (x#xs) ys =

itrev xs (x#ys)

lemma itrev xs [] = rev xs
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Induction_Demo.thy

Generalisation
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Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)
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So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.
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Computation Induction:
Example

fun div2 :: nat ) nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2 (Suc(Suc n)) = Suc(div2 n)

; induction rule div2.induct:

P (0) P (Suc 0)
V
n. P (n) =) P (Suc(Suc n))

P (m)
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Computation Induction

If f :: ⌧ ) ⌧ 0 is defined by fun, a special induction
schema is provided to prove P (x) for all x :: ⌧ :

for each defining equation

f(e) = . . . f(r1) . . . f(rk) . . .

prove P (e) assuming P (r1), . . . , P (r
k

).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct
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How to apply f.induct

If f :: ⌧1 ) · · ·) ⌧
n

) ⌧ 0:

(induction a1 . . . a
n

rule: f.induct)

Heuristic:

• there should be a call f a1 . . . a
n

in your goal

• ideally the a
i

should be variables.
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Induction_Demo.thy

Computation Induction
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4 Induction and Simplification
Induction
Simplification
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Simplification means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation ; simplification rule

Simplification = (Term) Rewriting
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An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m+ n) (2)

(Suc m  Suc n) = (m  n) (3)

(0  m) = True (4)

Rewriting:

0 + Suc 0  Suc 0 + x
(1)
=

Suc 0  Suc 0 + x
(2)
=

Suc 0  Suc (0 + x)
(3)
=

0  0 + x
(4)
=

True
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Conditional rewriting

Simplification rules can be conditional:

[[ P1; . . . ; Pk

]] =) l = r

is applicable only if all P
i

can be proved first,
again by simplification.

Example:
p(0) = True

p(x) =) f(x) = g(x)

We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[ P1; . . . ; Pk

]] =) l = r

is suitable as a simp-rule only
if l is “bigger” than r and each P

i

n < m =) (n < Suc m) = True YES
Suc n < m =) (n < m) = True NO
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Proof method simp
Goal: 1. [[ P1; . . . ; Pm

]] =) C

apply(simp add: eq1 . . . eq
n

)

Simplify P1 . . . P
m

and C using

• lemmas with attribute simp

• rules from fun and datatype

• additional lemmas eq1 . . . eq
n

• assumptions P1 . . . P
m

Variations:

•
(simp . . . del: . . . ) removes simp-lemmas

• add and del are optional
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auto versus simp

• auto acts on all subgoals

• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . . )
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def . . . )

f is the function whose definition is to be unfolded.
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Case splitting with simp
Automatic:

P(if A then s else t)
=

(A �! P(s)) ^ (¬A �! P(t))

By hand:

P(case e of 0 ) a | Suc n ) b)
=

(e = 0 �! P(a)) ^ (8 n. e = Suc n �! P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split
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Simp_Demo.thy

99



2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation
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Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg +
@
@@

�
��a *

A
AA

�
��

5 b

Parser: function from strings to trees

Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!
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Concrete syntax is defined by a context-free grammar, eg

a ::= n | x | (a) | a+ a | a ⇤ a | . . .

where n can be any natural number and x any variable.

We focus on abstract syntax
which we introduce via datatypes.
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Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete Abstract
5 N 5
x V 00x 00

x+y Plus (V 00x 00) (V 00y 00)
2+(z+3) Plus (N 2) (Plus (V 00z 00) (N 3))
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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The (program) state

What is the value of x+1?

• The value of an expression
depends on the value of its variables.

• The value of all variables is recorded in the state.

• The state is a function from variable names to
values:

type_synonym val = int
type_synonym state = vname ) val
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Function update notation

If f :: ⌧ 1 ) ⌧ 2 and a :: ⌧ 1 and b :: ⌧ 2 then

f(a := b)

is the function that behaves like f
except that it returns b for argument a.

f(a := b) = (�x. if x = a then b else f x)
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How to write down a state

Some states:

• �x. 0

•
(�x. 0)( 00a 00 := 3)

•
((�x. 0)( 00a 00 := 5))( 00x 00 := 3)

Nicer notation:

< 00a 00 := 5, 00x 00 := 3, 00y 00 := 7>

Maps everything to 0, but 00a 00 to 5, 00x 00 to 3, etc.
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AExp.thy
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation
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BExp.thy
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation
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ASM.thy
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This was easy.
Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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Syntax (in decreasing precedence):

form ::= (form) | term = term | ¬form
| form ^ form | form _ form | form �! form
| 8x. form | 9x. form

Examples:
¬ A ^ B _ C ⌘ ((¬ A) ^ B) _ C

s = t ^ C ⌘ (s = t) ^ C
A ^ B = B ^ A ⌘ A ^ (B = B) ^ A
8 x. P x ^ Q x ⌘ 8 x. (P x ^ Q x)

Input syntax:  ! (same precedence as �!)
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Variable binding convention:

8 x y. P x y ⌘ 8 x. 8 y. P x y

Similarly for 9 and �.
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Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

! P ^ 8 x. Q x ; P ^ (8 x. Q x) !
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X-Symbols

. . . and their ascii representations:

8 \<forall> ALL
9 \<exists> EX
� \<lambda> %
�! -->
 ! <-->
^ /\ &
_ \/ |
¬ \<not> ~
6= \<noteq> ~=
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Sets over type 0a
0a set = 0a ) bool

• {}, {e1,. . . ,en}
• e 2 A, A ✓ B
• A [ B, A \ B, A � B, � A
• . . .

2 \<in> :
✓ \<subseteq> <=
[ \<union> Un
\ \<inter> Int
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Set comprehension

• {x. P} where x is a variable

• But not {t. P} where t is a proper term

• Instead: {t |x y z. P}
is short for {v. 9 x y z. v = t ^ P}
where x, y, z are the variables in t.
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck

• highly incomplete

• Extensible with new simp-rules

Exception: auto acts on all subgoals
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fastforce

• rewriting, logic, sets, relations and a bit of arithmetic.

• incomplete but better than auto.

• Succeeds or fails

• Extensible with new simp-rules
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blast

• A complete proof search procedure for FOL . . .

• . . . but (almost) without “=”

• Covers logic, sets and relations

• Succeeds or fails

• Extensible with new deduction rules
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Automating arithmetic

arith:

• proves linear formulas (no “⇤”)
• complete for quantifier-free real arithmetic

• complete for first-order theory of nat and int
(Presburger arithmetic)
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Sledgehammer
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Architecture:

Isabelle

Formula
& filtered library

# " Proof
=

lemmas used
external
ATPs

1

Characteristics:

• Sometimes it works,

• sometimes it doesn’t.

Do you feel lucky?

1

Automatic Theorem Provers
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by(proof-method)

⇡

apply(proof-method)
done
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Auto_Proof_Demo.thy
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.
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What are these ?-variables ?

After you have finished a proof, Isabelle turns all free
variables V in the theorem into ?V.

Example: theorem conjI: [[?P; ?Q]] =) ?P ^ ?Q

These ?-variables can later be instantiated:

• By hand:
conjI[of "a=b" "False"] ;
[[a = b; False]] =) a = b ^ False

• By unification:
unifying ?P ^ ?Q with a=b ^ False
sets ?P to a=b and ?Q to False.
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Rule application
Example: rule: [[?P; ?Q]] =) ?P ^ ?Q

subgoal: 1. . . . =) A ^ B
Result: 1. . . . =) A

2. . . . =) B

The general case: applying rule [[ A1; . . . ; A
n

]] =) A
to subgoal . . . =) C:

• Unify A and C
• Replace C with n new subgoals A1 . . .An

apply(rule xyz)

“Backchaining”
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Typical backwards rules

?P ?Q
?P ^ ?Q

conjI

?P =) ?Q
?P �! ?Q

impI

V
x. ?P x
8 x. ?P x allI

?P =) ?Q ?Q =) ?P
?P = ?Q iffI

They are known as introduction rules
because they introduce a particular connective.
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Teaching blast new intro rules
If r is a theorem [[ A1; . . . ; An

]] =) A then

(blast intro: r)

allows blast to backchain on r during proof search.

Example:

theorem trans: [[ ?x  ?y; ?y  ?z ]] =) ?x  ?z

goal 1. [[ a  b; b  c; c  d ]] =) a  d

proof apply(blast intro: trans)

Can greatly increase the search space!
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Forward proof: OF
If r is a theorem [[ A1; . . . ; An

]] =) A
and r1, . . . , rm (mn) are theorems then

r[OF r1 . . . r
m

]

is the theorem obtained
by proving A1 . . . A

m

with r1 . . . r
m

.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]
;

a = a ^ b = b
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From now on: ? mostly suppressed on slides
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Single_Step_Demo.thy
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=) versus �!

=) is part of the Isabelle framework. It structures
theorems and proof states: [[ A1; . . . ; An

]] =) A

�! is part of HOL and can occur inside the logical
formulas A

i

and A.

Phrase theorems like this [[ A1; . . . ; An

]] =) A
not like this A1 ^ . . . ^ A

n

�! A
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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Example: even numbers

Informally:

• 0 is even

• If n is even, so is n+ 2

• These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat ) bool
where

ev 0 |
ev n =) ev (n + 2)
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An easy proof: ev 4

ev 0 =) ev 2 =) ev 4
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Consider

fun even :: nat ) bool where
even 0 = True |
even (Suc 0) = False |
even (Suc (Suc n)) = even n

A trickier proof: ev m =) even m

By induction on the structure of the derivation of ev m

Two cases: ev m is proved by
• rule ev 0
=) m = 0 =) even m = True

• rule ev n =) ev (n+2)
=) m = n+2 and even n (IH)
=) even m = even (n+2) = even n = True
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Rule induction for ev
To prove

ev n =) P n

by rule induction on ev n we must prove

• P 0

• P n =) P(n+2)

Rule ev.induct:

ev n P 0
V
n. [[ ev n; P n ]] =) P(n+2)

P n
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Format of inductive definitions

inductive I :: ⌧ ) bool where
[[ I a1; . . . ; I a

n

]] =) I a |
...

Note:

• I may have multiple arguments.

• Each rule may also contain side conditions not
involving I.
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Rule induction in general

To prove

I x =) P x

by rule induction on I x
we must prove for every rule

[[ I a1; . . . ; I a
n

]] =) I a

that P is preserved:

[[ I a1; P a1; . . . ; I a
n

; P a
n

]] =) P a
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!

Rule induction is absolutely central
to (operational) semantics

and the rest of this lecture course
!
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Inductive_Demo.thy
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Inductively defined sets

inductive_set I :: ⌧ set where
[[ a1 2 I; . . . ; a

n

2 I ]] =) a 2 I |
...

Di↵erence to inductive:

• arguments of I are tupled, not curried

• I can later be used with set theoretic operators,
eg I [ . . .
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Induction and Simplification

5 Case Study: IMP Expressions

6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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Apply scripts

• unreadable

• hard to maintain

• do not scale

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration
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A typical Isar proof

proof

assume formula0

have formula1 by simp
...
have formula

n

by blast
show formula

n+1 by . . .
qed

proves formula0 =) formula
n+1
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Isar core syntax
proof = proof [method] step⇤ qed

| by method

method = (simp . . . ) | (blast . . . ) | (induction . . . ) | . . .

step = fix variables (
V
)

| assume prop (=))
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | . . .
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7 Isar: A Language for Structured Proofs
Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
Rule Inversion
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Example: Cantor’s theorem

lemma ¬ surj(f :: 0a ) 0a set)
proof default proof: assume surj, show False

assume a: surj f
from a have b: 8 A. 9 a. A = f a
by(simp add: surj def)

from b have c: 9 a. {x. x /2 f x} = f a
by blast

from c show False
by blast

qed
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Isar_Demo.thy

Cantor and abbreviations
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Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have
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using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this
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Structured lemma statement
lemma

fixes f :: 0a ) 0a set
assumes s: surj f
shows False

proof � no automatic proof step

have 9 a. {x. x /2 f x} = f a using s
by(auto simp: surj def)

thus False by blast
qed

Proves surj f =) False
but surj f becomes local fact s in proof.
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The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively
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Structured lemma statements

fixes x :: ⌧1 and y :: ⌧2 . . .
assumes a: P and b: Q . . .
shows R

•
fixes and assumes sections optional

•
shows optional if no fixes and assumes
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Case distinction

show R
proof cases
assume P
.

.

.

show R . . .
next

assume ¬ P
.

.

.

show R . . .
qed

have P _ Q . . .
then show R
proof

assume P
.

.

.

show R . . .
next

assume Q
.

.

.

show R . . .
qed
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Contradiction

show ¬ P
proof

assume P
.

.

.

show False . . .
qed

show P
proof (rule ccontr)
assume ¬P
.

.

.

show False . . .
qed
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 !

show P  ! Q
proof

assume P
.

.

.

show Q . . .
next

assume Q
.

.

.

show P . . .
qed

169



8 and 9 introduction
show 8 x. P(x)
proof

fix x local fixed variable

show P(x) . . .
qed

show 9 x. P(x)
proof

...
show P(witness) . . .

qed
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9 elimination: obtain

have 9 x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x
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obtain example

lemma ¬ surj(f :: 0a ) 0a set)
proof

assume surj f
hence 9 a. {x. x /2 f x} = f a by(auto simp: surj def)

then obtain a where {x. x /2 f x} = f a by blast
hence a /2 f a  ! a 2 f a by blast

thus False by blast
qed
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Set equality and subset

show A = B
proof

show A ✓ B . . .
next

show B ✓ A . . .
qed

show A ✓ B
proof

fix x
assume x 2 A
.

.

.

show x 2 B . . .
qed
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Isar_Demo.thy

Exercise
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Example: pattern matching

show formula1  ! formula2 (is ?L  ! ?R)
proof

assume ?L
...
show ?R . . .

next

assume ?R
...
show ?L . . .

qed
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?thesis

show formula (is ?thesis)
proof -

...
show ?thesis . . .

qed

Every show implicitly defines ?thesis
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let

Introducing local abbreviations in proofs:

let ?t = "some-big-term"
...
have ". . . ?t . . . "
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Quoting facts by value
By name:

have x0: ”x > 0” . . .
...
from x0 . . .

By value:

have ”x > 0” . . .
...
from ‘x>0‘ . . .

" "
back quotes
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Isar_Demo.thy

Pattern matching and quotation
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Example

lemma

assumes xs = rev xs
shows (9 ys. xs = ys @ rev ys) _

(9 ys a. xs = ys @ a # rev ys)
proof ???
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Isar_Demo.thy

Top down proof development
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When automation fails
Split proof up into smaller steps.

Or explore by apply:

have . . . using . . .
apply - to make incoming facts

part of proof state
apply auto or whatever
apply . . .

At the end:

•
done

• Better: convert to structured proof
184
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moreover—ultimately

have P1 . . .
moreover

have P2 . . .
moreover

.

.

.

moreover

have P
n

. . .
ultimately

have P . . .

⇡

have lab1: P1 . . .
have lab2: P2 . . .
.

.

.

have lab
n

: P
n

. . .
from lab1 lab2 . . .
have P . . .

With names
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Raw proof blocks

{ fix x1 . . . x
n

assume A1 . . . A
m

...
have B

}

proves [[ A1; . . . ; A
m

]] =) B
where all x

i

have been replaced by ?x
i

.
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Isar_Demo.thy

moreover and { }
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Proof state and Isar text

In general: proof method

Applies method and generates subgoal(s):
V
x1 . . . x

n

[[ A1; . . . ; A
m

]] =) B

How to prove each subgoal:

fix x1 . . . x
n

assume A1 . . . A
m

...
show B

Separated by next
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Isar_Induction_Demo.thy

Case distinction
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Datatype case distinction
datatype t = C1 ~⌧ | . . .

proof (cases "term")
case (C1 x1 . . . x

k

)

. . . x
j

. . .
next

...
qed

where case (C
i

x1 . . . x
k

) ⌘
fix x1 . . . x

k

assume C
i

:|{z}
label

term = (C
i

x1 . . . x
k

)| {z }
formula
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Isar_Induction_Demo.thy

Structural induction for nat
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Structural induction for nat

show P(n)
proof (induction n)
case 0 ⌘ let ?case = P (0)
...
show ?case

next

case (Suc n) ⌘ fix n assume Suc: P (n)
... let ?case = P (Suc n)...
show ?case

qed
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Structural induction with =)
show A(n) =) P(n)
proof (induction n)
case 0 ⌘ assume 0: A(0)
... let ?case = P(0)
show ?case

next

case (Suc n) ⌘ fix n
... assume Suc: A(n) =) P(n)

A(Suc n)
... let ?case = P(Suc n)
show ?case

qed
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Named assumptions

In a proof of

A1 =) . . . =) A
n

=) B

by structural induction:
In the context of

case C

we have

C.IH the induction hypotheses

C.prems the premises A
i

C C.IH + C.prems
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A remark on style

•
case (Suc n) . . . show ?case
is easy to write and maintain

•
fix n assume formula . . . show formula 0

is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)

197



7 Isar: A Language for Structured Proofs
Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
Rule Inversion

198



Isar_Induction_Demo.thy

Rule induction
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Rule induction

inductive I :: ⌧ ) � ) bool
where

rule1: . . .
...
rulen: . . .

show I x y =) P x y
proof (induction rule: I.induct)
case rule1
. . .
show ?case

next

...
next

case rulen
. . .
show ?case

qed
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Fixing your own variable names

case (rule
i

x1 . . . x
k

)

Renames the first k variables in rule
i

(from left to right)
to x1 . . . x

k

.
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Named assumptions
In a proof of

I . . . =) A1 =) . . . =) A
n

=) B

by rule induction on I . . . :
In the context of

case R

we have

R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises A
i

R R.IH + R.hyps + R.prems
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Rule inversion

inductive ev :: nat ) bool where
ev0: ev 0 |
evSS: ev n =) ev(Suc(Suc n))

What can we deduce from ev n ?
That it was proved by either ev0 or evSS !

ev n =) n = 0 _ (9 k. n = Suc (Suc k) ^ ev k)

Rule inversion = case distinction over rules
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Isar_Induction_Demo.thy

Rule inversion
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Rule inversion template
from ‘ev n‘ have P
proof cases
case ev0 n = 0
...
show ?thesis . . .

next

case (evSS k) n = Suc (Suc k), ev k
...
show ?thesis . . .

qed

Impossible cases disappear automatically
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Part II

IMP: A Simple Imperative Language
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8 IMP

9 Compiler

10 A Typed Version of IMP
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8 IMP

9 Compiler

10 A Typed Version of IMP
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Terminology

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something

Study the book until you have understood it.

Expressions are evaluated, commands are executed
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Commands

Concrete syntax:

com ::= SKIP

| string ::= aexp

| com ; com

| IF bexp THEN com ELSE com

| WHILE bexp DO com
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Commands

Abstract syntax:

datatype com = SKIP

| Assign string aexp

| Seq com com

| If bexp com com

| While bexp com
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Com.thy
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8 IMP
Big Step Semantics
Small Step Semantics
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Big step semantics

Concrete syntax:

(com, initial-state) ) final-state

Intended meaning of (c, s) ) t:

Command c started in state s terminates in state t

“)” here not type!
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Big step rules

(SKIP, s) ) s

(x ::= a, s) ) s(x := aval a s)

(c1, s1) ) s2 (c2, s2) ) s3
(c1; c2, s1) ) s3
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Big step rules

bval b s (c1, s) ) t

(IF b THEN c1 ELSE c2, s) ) t

¬ bval b s (c2, s) ) t

(IF b THEN c1 ELSE c2, s) ) t
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Big step rules

¬ bval b s

(WHILE b DO c, s) ) s

bval b s1
(c, s1) ) s2 (WHILE b DO c, s2) ) s3

(WHILE b DO c, s1) ) s3
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Examples: derivation trees

...
(

00x 00 ::= N 5; 00y 00 ::= V 00x 00, s) ) ?

...
(w, s

i

) ) ?

where w = WHILE b DO c
b = NotEq (V 00x 00) (N 2)
c =

00x 00 ::= Plus (V 00x 00) (N 1)
s
i

= s( 00x 00 := i)
NotEq a1 a2 =
Not(And (Not(Less a1 a2)) (Not(Less a2 a1)))
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Logically speaking

(c, s) ) t

is just infix syntax for

big step (c,s) t

where

big step :: com ⇥ state ) state ) bool

is an inductively defined predicate.
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Big_Step.thy

Semantics

221



Rule inversion
What can we deduce from

•
(SKIP, s) ) t ?

t = s

•
(x ::= a, s) ) t ?

t = s(x := aval a s)

•
(c1; c2, s1) ) s3 ?

9 s2. (c1, s1) ) s2 ^ (c2, s2) ) s3

•
(IF b THEN c1 ELSE c2, s) ) t ?

bval b s ^ (c1, s) ) t _
¬ bval b s ^ (c2, s) ) t

•
(w, s) ) t where w = WHILE b DO c ?

¬ bval b s ^ t = s _
bval b s ^ (9 s 0. (c, s) ) s 0 ^ (w, s 0) ) t)
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Automating rule inversion

Isabelle command inductive_cases produces theorems
that perform rule inversions automatically.

223



We reformulate the inverted rules. Example:

(c1; c2, s1) ) s3
9 s2. (c1, s1) ) s2 ^ (c2, s2) ) s3

is logically equivalent to the more convenient

(c1; c2, s1) ) s3^
s2. [[(c1, s1) ) s2; (c2, s2) ) s3]] =) P

P

Replaces assm (c1; c2, s1) ) s3 by two assms
(c1, s1) ) s2 and (c2, s2) ) s3 (with a new fixed s2).

No 9 and ^!
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The general format: elimination rules

asm asm1 =) P . . . asm
n

=) P
P

(possibly with
V
x in front of the asm

i

=) P )

Reading:

To prove a goal P with assumption asm,
prove all asm

i

=) P

Example:

F _ G F =) P G =) P
P
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elim attribute

• Theorems with elim attribute are used
automatically by blast, fastforce and auto

• Can also be added locally, eg (blast elim: . . . )

• Variant: elim! applies elim-rules eagerly.
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Big_Step.thy

Rule inversion
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Command equivalence

Two commands have the same input/output behaviour:

c ⇠ c 0 ⌘ (8 s t. (c,s) ) t  ! (c 0,s) ) t)
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Example

w ⇠ iw

where w = WHILE b DO c
iw = IF b THEN c; w ELSE SKIP

A derivation-based proof:
transform any derivation of (w, s) ) t
into a derivation of (iw, s) ) t,
and vice versa.
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A formula-based proof

(w, s) ) t

 !
bval b s ^ (9 s 0. (c, s) ) s 0 ^ (w, s 0) ) t)

_
¬ bval b s ^ t = s

 !
(iw, s) ) t

Using the rules and rule inversions for ).
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Big_Step.thy

Command equivalence
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Execution is deterministic

Any two executions of the same command in the same
start state lead to the same final state:

(c, s) ) t =) (c, s) ) t 0 =) t = t 0

Proof by rule induction, for arbitrary t 0.
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Big_Step.thy

Execution is deterministic
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The boon and bane of big steps

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate i↵ ¬ (9 t. (c, s) ) t) ?

Needs a formal notion of nontermination to prove it.
Could be wrong if we have forgotten a ) rule.
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Big step semantics cannot directly describe

• nonterminating computations,

• parallel computations.

We need a finer grained semantics!
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8 IMP
Big Step Semantics
Small Step Semantics
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Small step semantics
Concrete syntax:

(com,state) ! (com,state)

Intended meaning of (c, s) ! (c 0, s 0):

The first step in the execution of c in state s
leaves a “remainder” command c 0

to be executed in state s 0.

Execution as finite or infinite reduction:

(c1,s1) ! (c2,s2) ! (c3,s3) ! . . .
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Terminology

• A pair (c,s) is called a configuration.

• If cs ! cs 0 we say that cs reduces to cs 0.

• A configuration cs is final i↵ ¬ (9 cs 0. cs ! cs 0)
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The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.
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Small step rules

(x::=a, s) ! (SKIP, s(x := aval a s))

(SKIP; c, s) ! (c, s)

(c1, s) ! (c01, s
0
)

(c1; c2, s) ! (c01; c2, s
0
)
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Small step rules

bval b s

(IF b THEN c1 ELSE c2, s) ! (c1, s)

¬ bval b s

(IF b THEN c1 ELSE c2, s) ! (c2, s)

(WHILE b DO c, s) !
(IF b THEN c; WHILE b DO c ELSE SKIP, s)

Fact (SKIP, s) is a final configuration.
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Small step examples

(

00z 00 ::= V 00x 00; 00x 00 ::= V 00y 00; 00y 00 ::= V 00z 00, s) ! . . .

where s = < 00x 00 := 3, 00y 00 := 7, 00z 00 := 5>.

(w, s0) ! . . .

where w = WHILE b DO c
b = Less (V 00x 00) (N 1)
c =

00x 00 ::= Plus (V 00x 00) (N 1)
s
n

= < 00x 00 := n>
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Small_Step.thy

Semantics
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Are big and small step semantics equivalent?
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From ) to !⇤

Theorem cs ) t =) cs !⇤ (SKIP, t)

Proof by rule induction (of course on cs ) t)

245



From !⇤ to )

Theorem cs !⇤ (SKIP, t) =) cs ) t

Needs to be generalized:

Lemma 1 cs !⇤ cs 0 =) cs 0 ) t =) cs ) t

Now Theorem follows from Lemma 1 by (SKIP, t) ) t.

Lemma 1 is proved by rule induction on cs !⇤ cs 0.
Needs

Lemma 2 cs ! cs 0 =) cs 0 ) t =) cs ) t

Lemma 2 is proved by rule induction on cs ! cs 0.
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Equivalence

Corollary cs ) t  ! cs !⇤ (SKIP, t)
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Small_Step.thy

Equivalence of big and small
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Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (c, s) =) c = SKIP

We prove the contrapositive

c 6= SKIP =) ¬ final(c,s)

by induction on c.
• Case c1; c2: by case distinction:

• c1 = SKIP =) ¬ final (c1; c2, s)
• c1 6= SKIP =) ¬ final (c1, s) (by IH)

=) ¬ final (c1; c2, s)

• Remaining cases: trivial or easy
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By rule inversion: (SKIP, s) ! ct =) False

Together:

Corollary final (c, s) = (c = SKIP)
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Infinite executions

) yields final state i↵ ! terminates

Lemma (9 t. cs ) t) = (9 cs 0. cs !⇤ cs 0 ^ final cs 0)

Proof: (9 t. cs ) t)
= (9 t. cs !⇤ (SKIP,t))

(by big = small)
= (9 cs 0. cs !⇤ cs 0 ^ final cs 0)

(by final = SKIP)

Equivalent:

) does not yield final state i↵ ! does not terminate
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May versus Must

! is deterministic:

Lemma cs ! cs 0 =) cs ! cs 00 =) cs 00 = cs 0

(Proof by rule induction)

Therefore: no di↵erence between

may terminate (there is a terminating ! path)

must terminate (all ! paths terminate)

Therefore: ) correctly reflects termination behaviour.

With nondeterminism: may have both cs ) t and a
nonterminating reduction cs ! cs 0 ! . . .
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9 Compiler
Stack Machine
Compiler
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Stack Machine

Instructions:

datatype instr =
LOADI int load value

| LOAD vname load var
| ADD add top of stack
| STORE vname store var
| JMP int jump
| JMPLESS int jump if <
| JMPGE int jump if �
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Semantics

Type synonyms:
stack = int list
config = int ⇥ state ⇥ stack

Execution of 1 instruction:

iexec :: instr ) config ) config
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Instruction execution
iexec instr (i, s, stk) =
(case instr of LOADI n ) (i + 1, s, n # stk)
| LOAD x ) (i + 1, s, s x # stk)
| ADD ) (i + 1, s, (hd2 stk + hd stk) # tl2 stk)
| STORE x ) (i + 1, s(x := hd stk), tl stk)
| JMP n ) (i + 1 + n, s, stk)
| JMPLESS n )

(if hd2 stk < hd stk then i + 1 + n else i + 1,
s, tl2 stk)

| JMPGE n )
(if hd stk  hd2 stk then i + 1 + n else i + 1,
s, tl2 stk))

257



Program execution (1 step)
Programs are instruction lists.

Executing one program step:

instr list ` config ! config

P ` c ! c 0 =
(9 i s stk.

c = (i, s, stk) ^
c 0 = iexec (P !! i) (i, s, stk) ^
0  i ^ i < isize P)

where 0a list !! int = nth instruction of list
and isize :: list ) int = list size as integer
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Program execution (⇤ steps)

Defined in the usual manner:

P ` (pc, s, stk) !⇤ (pc 0, s 0, stk 0)
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Compiler.thy

Stack Machine
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Compiling aexp
Same as before:

acomp (N n) = [LOADI n]
acomp (V x) = [LOAD x]
acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]

Correctness theorem:

acomp a
` (0, s, stk) !⇤ (isize (acomp a), s, aval a s # stk)

Proof by induction on a (with arbitrary stk).

Needs lemmas!
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P ` c !⇤ c 0 =) P @ P 0 ` c !⇤ c 0

P ` (i, s, stk) !⇤ (i 0, s 0, stk 0) =)
P 0 @ P
` (isize P 0 + i, s, stk) !⇤ (isize P 0 + i 0, s 0, stk 0)

Proofs by rule induction on !⇤,
using the corresponding single step lemmas:

P ` c ! c 0 =) P @ P 0 ` c ! c 0

P ` (i, s, stk) ! (i 0, s 0, stk 0) =)
P 0 @ P ` (isize P 0 + i, s, stk) ! (isize P 0 + i 0, s 0, stk 0)

Proofs by cases/induction.
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Compiling bexp
Let ins be the compilation of b:

Do not put value of b on the stack
but let value of b determine where execution of ins ends.

Principle:

• Either execution leads to the end of ins

• or it jumps to o↵set +n beyond ins.

Parameters: when to jump (if b is True or False)
where to jump to (n)

bcomp :: bexp ) bool ) int ) instr list
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Example

Let b = And (Less (V 00x 00) (V 00y 00))
(Not (Less (V 00z 00) (V 00a 00))).

bcomp b False 3 =

[LOAD 00x 00,
LOAD 00y 00,

JMPGE 6

,
LOAD 00z 00,
LOAD 00a 00,

JMPLESS 3

]
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bcomp :: bexp ) bool ) int ) instr list

bcomp (Bc v) c n = (if v = c then [JMP n] else [])

bcomp (Not b) c n = bcomp b (¬c) n

bcomp (Less a1 a2) c n =

acomp a1 @

acomp a2 @ (if c then [JMPLESS n] else [JMPGE n])

bcomp (And b1 b2) c n =

let cb2 = bcomp b2 c n;
m = if c then isize cb2 else isize cb2 + n;
cb1 = bcomp b1 False m

in cb1 @ cb2
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Correctness of bcomp

0  n =)
bcomp b c n
` (0, s, stk) !⇤
(isize (bcomp b c n) + (if c = bval b s then n else 0),
s, stk)
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Compiling com

ccomp :: com ) instr list

ccomp SKIP = []

ccomp (x ::= a) = acomp a @ [STORE x]

ccomp (c1; c2) = ccomp c1 @ ccomp c2

268



ccomp (IF b THEN c1 ELSE c2) =

let cc1 = ccomp c1; cc2 = ccomp c2;
cb = bcomp b False (isize cc1 + 1)

in cb @ cc1 @ JMP (isize cc2) # cc2

ccomp (WHILE b DO c) =

let cc = ccomp c;
cb = bcomp b False (isize cc + 1)

in cb @ cc @ [JMP (� (isize cb + isize cc + 1))]
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Correctness of ccomp

If the source code produces a certain result,
so should the compiled code:

(c, s) ) t =)
ccomp c ` (0, s, stk) !⇤ (isize (ccomp c), t, stk)

Proof by rule induction.
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The other direction
We have only shown “=)”:

compiled code simulates source code.

How about “(=”:
source code simulates compiled code?

If ccomp c with start state s produces result t,
and if(!) (c, s) ) t 0, then “=)” implies
that ccomp c with start state s must also produce t 0

and thus t 0 = t (why?).

But we have not ruled out this potential error:

c does not terminate but ccomp c does.
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The other direction

Two approaches:

• In the absence of nondeterminism:
Prove that ccomp preserves nontermination.
A nice proof of this fact requires coinduction.
Isabelle supports coinduction, this course avoids it.

• A direct proof: Comp Rev.thy

ccomp c ` (0, s, stk) !⇤ (isize (ccomp c), t, stk 0) =)
(c, s) ) t
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10 A Typed Version of IMP
Remarks on Type Systems
Typed IMP: Semantics
Typed IMP: Type System
Type Safety of Typed IMP
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Why Types?

To prevent mistakes, dummy!
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There are 3 kinds of types

The Good Static types that guarantee absence of certain
runtime faults.
Example: no memory access errors in Java.

The Bad Static types that have mostly decorative value
but do not guarantee anything at runtime.
Example: C, C++

The Ugly Dynamic types that detect errors when it can
be too late.
Example: “TypeError: . . . ” in Python.
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The ideal

Well-typed programs cannot go wrong.

Robin Milner, A Theory of Type Polymorphism in
Programming, 1978.

The most influential slogan and one of the most
influential papers in programming language theory.
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What could go wrong?

1 Corruption of data

2 Null pointer exception

3 Nontermination

4 Run out of memory

5 Secret leaked

6 and many more . . .

There are type systems for everything (and more)
but in practice (Java, C#) only 1 is covered.
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Type safety

A programming language is type safe if the execution of
a well-typed program cannot lead to certain errors.

Java and the JVM have been proved to be type safe.
(Note: Java exceptions are not errors!)
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Correctness and completeness
Type soundness means that the type system is
sound/correct w.r.t. the semantics:

If the type system says yes,
the semantics does not lead to an error.

The semantics is the primary definition,
the type system must be justified w.r.t. it.

How about completeness? Remember Rice:

Nontrivial semantic properties of programs
(e.g. termination) are undecidable.

Hence there is no (decidable) type system that accepts
all programs that have a certain semantic property.
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Automatic analysis of semantic program properties
is necessarily incomplete.
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Arithmetic

Values:

datatype val = Iv int | Rv real

The state:

state = vname ) val

Arithmetic expresssions:

datatype aexp =

Ic int | Rc real | V vname | Plus aexp aexp
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Why tagged values?

Because we want to detect if things “go wrong”.

What can go wrong? Adding integer and real!
No automatic coercions.

Does this mean any implementation of IMP also needs
to tag values?

No! Compilers compile only well-typed programs, and
well-typed programs do not need tags.

Tags are only used to detect certain errors
and to prove that the type system avoids those errors.
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Evaluation of aexp
Not recursive function but inductive predicate:

taval :: aexp ) state ) val ) bool

taval (Ic i) s (Iv i)

taval (Rc r) s (Rv r)

taval (V x) s (s x)

taval a1 s (Iv i1) taval a2 s (Iv i2)

taval (Plus a1 a2) s (Iv (i1 + i2))

taval a1 s (Rv r1) taval a2 s (Rv r2)

taval (Plus a1 a2) s (Rv (r1 + r2))
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Example: evaluation of Plus (V 00x 00) (Ic 1)

If s 00x 00 = Iv i:

taval (V 00x 00) s (Iv i) taval (Ic 1) s (Iv 1)

taval (Plus (V 00x 00) (Ic 1)) s (Iv(i + 1))

If s 00x 00 = Rv r : then there is no value v such that
taval (Plus (V 00x 00) (Ic 1)) s v.
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The functional alternative

taval :: aexp ) state ) val option

Exercise!
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Boolean expressions
Syntax as before. Semantics:

tbval :: bexp ) state ) bool ) bool

tbval (Bc v) s v
tbval b s bv

tbval (Not b) s (¬ bv)

tbval b1 s bv1 tbval b2 s bv2
tbval (And b1 b2) s (bv1 ^ bv2)

taval a1 s (Iv i1) taval a2 s (Iv i2)

tbval (Less a1 a2) s (i1 < i2)

taval a1 s (Rv r1) taval a2 s (Rv r2)

tbval (Less a1 a2) s (r1 < r2)
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com: big or small steps?

We need to detect if things “go wrong”.

• Big step semantics:
Cannot model error by absence of final state.
Would confuse error and nontermination.
Could introduce an extra error-element, e.g.
big step :: com ⇥ state ) state option ) bool
Complicates formalization.

• Small step semantics:
error = semantics gets stuck
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Small step semantics

taval a s v

(x ::= a, s) ! (SKIP, s(x := v))

tbval b s True

(IF b THEN c1 ELSE c2, s) ! (c1, s)

tbval b s False

(IF b THEN c1 ELSE c2, s) ! (c2, s)

The other rules remain unchanged.
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Example

Let c = (

00x 00 ::= Plus (V 00x 00) (Ic 1)).

• If s 00x 00 = Iv i :
(c, s) ! (SKIP, s( 00x 00 := Iv (i + 1)))

• If s 00x 00 = Rv r :
(c, s) 6!
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Type system
There are two types:

datatype ty = Ity | Rty
What is the type of Plus (V 00x 00) (V 00y 00) ?

Depends on the type of V 00x 00 and V 00y 00 !

A type environment maps variable names to their types:
tyenv = vname ) ty

The type of an expression is always relative to a type
enviroment �. Standard notation:

� ` e : ⌧

Read: In the context of �, e has type ⌧
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The type of an aexp

� ` a : ⌧
tyenv ` aexp : ty

The rules:

� ` Ic i : Ity

� ` Rc r : Rty

� ` V x : � x

� ` a1 : ⌧ � ` a2 : ⌧

� ` Plus a1 a2 : ⌧
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Example

...
� ` Plus (V 00x 00) (Plus (V 00x 00) (Ic 0)) : ?

where �

00x 00 = Ity.
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Well-typed bexp

Notation:

� ` b
tyenv ` bexp

Read: In context �, b is well-typed.
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The rules:

� ` Bc v

� ` b

� ` Not b

� ` b1 � ` b2
� ` And b1 b2

� ` a1 : ⌧ � ` a2 : ⌧

� ` Less a1 a2

Example: � ` Less (Ic i) (Rc r) does not hold.
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Well-typed commands

Notation:

� ` c
tyenv ` com

Read: In context �, c is well-typed.
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The rules:

� ` SKIP
� ` a : � x

� ` x ::= a

� ` c1 � ` c2
� ` c1; c2

� ` b � ` c1 � ` c2
� ` IF b THEN c1 ELSE c2

� ` b � ` c

� ` WHILE b DO c
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Syntax-directedness

All three sets of typing rules are syntax-directed:

There is exactly one rule for each syntactic
construct (eg SKIP, ::= etc).

Therefore each set of rules is executable without
backtracking:

Given � and a term a/b/c, its well-typedness
(and its type) is computable by backchaining
without backtracking.

The big and small step semantics are not syntax-directed.
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Compositionality

All three sets of typing rules are compositional:

Well-typedness of a syntactic construct
C t1 . . . tn depends only on the well-typedness
of t1, . . . , tn.

Therefore type-checking always terminates and requires
at most as many backchaining steps as the size of the
term.

The big step semantics is not compositional because the
execution of WHILE depends on the execution of
WHILE.
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Well-typed states

Even well-typed programs can get stuck . . .
. . . if they start in an unsuitable state.

Remember:
If s 00x 00 = Rv r
then (

00x 00 ::= Plus (V 00x 00) (Ic 1), s) 6!

The state must be well-typed w.r.t. �.
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The type of a value:

type (Iv i) = Ity
type (Rv r) = Rty

Well-typed state:

� ` s  ! (8 x. type (s x) = � x)
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Type soundness
Reduction cannot get stuck:

If everything is ok ( � ` s, � ` c ),
and you take a finite number of steps,
and you have not reached SKIP,
then you can take one more step.

Follows from progress:

If everything is ok and you have not reached SKIP,
then you can take one more step.

and preservation:

If everything is ok and you take a step,
then everything is ok again.
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The slogan

Progress ^ Preservation =) Type safety

Progress Well-typed programs do not get stuck.

Preservation Well-typedness is preserved by reduction.

Preservation: Well-typedness is an invariant.
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com
Progress:

[[� ` c; � ` s; c 6= SKIP]] =) 9 cs 0. (c, s) ! cs 0

Preservation:

[[(c, s) ! (c 0, s 0); � ` c; � ` s]] =) � ` s 0

[[(c, s) ! (c 0, s 0); � ` c]] =) � ` c 0

Type soundness:

[[(c, s) !⇤ (c 0, s 0); � ` c; � ` s; c 0 6= SKIP]]
=) 9 cs 00. (c 0, s 0) ! cs 00
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bexp

Progress:

[[� ` b; � ` s]] =) 9 v. tbval b s v
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aexp

Progress:

[[� ` a : ⌧ ; � ` s]] =) 9 v. taval a s v

Preservation:

[[� ` a : ⌧ ; taval a s v; � ` s]] =) type v = ⌧
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All proofs by rule induction.
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Types.thy
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The mantra

Type systems have a purpose:

The static analysis of programs
in order to predict their runtime behaviour.

The correctness of the prediction must be provable.
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Part III

Data-Flow Analyses and Optimization
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11 Definite Initialization Analysis

12 Live Variable Analysis

13 Information Flow Analysis
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Each local variable must have a definitely
assigned value when any access of its value
occurs. A compiler must carry out a specific
conservative flow analysis to make sure that,
for every access of a local variable x, x is
definitely assigned before the access; otherwise
a compile-time error must occur.

Java Language Specification

Java was the first language to force programmers to
initialize their variables.
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Examples: ok or not?
Assume 00x 00 is initialized:

IF Less (V 00x 00) (N 1) THEN 00y 00 ::= V 00x 00

ELSE 00y 00 ::= Plus (V 00x 00) (N 1);
00y 00 ::= Plus (V 00y 00) (N 1)

IF Less (V 00x 00) (V 00x 00)
THEN 00y 00 ::= Plus (V 00y 00) (N 1)
ELSE 00y 00 ::= V 00x 00

Assume 00x 00 and 00y 00 are initialized:

WHILE Less (V 00x 00) (V 00y 00) DO 00z 00 ::= V 00x 00;
00z 00 ::= Plus (V 00z 00) (N 1)
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Simplifying principle

We do not analyze boolean expressions
to determine program execution.
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Theory Vars provides an overloaded function vars:

vars :: aexp ) vname set
vars (N n) = {}
vars (V x) = {x}
vars (Plus a1 a2) = vars a1 [ vars a2

vars :: bexp ) vname set
vars (Bc v) = {}
vars (Not b) = vars b
vars (And b1 b2) = vars b1 [ vars b2
vars (Less a1 a2) = vars a1 [ vars a2
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Vars.thy
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Modified example from the JLS:

Variable x is definitely initialized after SKIP
i↵ x is definitely initialized before SKIP.

Similar statements for each each language construct.
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D :: vname set ) com ) vname set ) bool

D A c A 0 should imply:

If all variables in A are initialized before c is executed,
then no uninitialized variable is accessed during execution,
and all variables in A 0 are initialized afterwards.
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D A SKIP A

vars a ✓ A

D A (x ::= a) (insert x A)

D A1 c1 A2 D A2 c2 A3

D A1 (c1; c2) A3

vars b ✓ A D A c1 A1 D A c2 A2

D A (IF b THEN c1 ELSE c2) (A1 \ A2)

vars b ✓ A D A c A 0

D A (WHILE b DO c) A
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Correctness of D

• Things can go wrong:
execution may access uninitialized variable.

=) We need a new, finer-grained semantics.

• Big step semantics:
semantics longer, correctness proof shorter

• Small step semantics:
semantics shorter, correctness proof longer

For variety’s sake, we choose a big step semantics.
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state = vname ) val option

where

datatype

0a option = None | Some 0a

Notation: s(x 7! y) means s(x := Some y)

Definition: dom s = {a. s a 6= None}
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Expression evaluation

aval :: aexp ) state ) val option

aval (N i) s = Some i

aval (V x) s = s x

aval (Plus a1 a2) s =

(case (aval a1 s, aval a2 s) of
(Some i1, Some i2) ) Some(i1+i2)

| ) None)
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bval :: bexp ) state ) bool option

bval (Bc v) s = Some v

bval (Not b) s =

(case bval b s of None ) None
| Some bv ) Some (¬ bv))

bval (And b1 b2) s =

(case (bval b1 s, bval b2 s) of
(Some bv1, Some bv2) ) Some(bv1 ^ bv2)

| ) None)

bval (Less a1 a2) s =

(case (aval a1 s, aval a2 s) of
(Some i1, Some i2) ) Some(i1 < i2)

| ) None)
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Big step semantics

(com, state) ) state option

A small complication:

(c1, s1) ) Some s2 (c2, s2) ) s

(c1; c2, s1) ) s

(c1, s1) ) None

(c1; c2, s1) ) None

More convenient, because compositional:

(com, state option) ) state option
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Error (None) propagates:

(c, None) ) None

Execution starting in (mostly) normal states (Some s):

(SKIP, s) ) s

aval a s = Some i

(x ::= a, Some s) ) Some (s(x 7! i))

aval a s = None

(x ::= a, Some s) ) None

(c1, s1) ) s2 (c2, s2) ) s3
(c1; c2, s1) ) s3

332



bval b s = Some True (c1, Some s) ) s 0

(IF b THEN c1 ELSE c2, Some s) ) s 0

bval b s = Some False (c2, Some s) ) s 0

(IF b THEN c1 ELSE c2, Some s) ) s 0

bval b s = None

(IF b THEN c1 ELSE c2, Some s) ) None

333



bval b s = Some False

(WHILE b DO c, Some s) ) Some s

bval b s = Some True
(c, Some s) ) s 0 (WHILE b DO c, s 0) ) s 00

(WHILE b DO c, Some s) ) s 00

bval b s = None

(WHILE b DO c, Some s) ) None
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Correctness of D w.r.t. )
We want in the end:

Well-initialized programs cannot go wrong.

If D (dom s) c A 0 and (c, Some s) ) s 0

then s 0 6= None.

We need to prove a generalized statement:

If (c, Some s) ) s 0 and D A c A 0 and A ✓ dom s
then 9 t. s 0 = Some t ^ A 0 ✓ dom t.

By rule induction on (c, Some s) ) s 0.
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Proof needs some easy lemmas:

vars a ✓ dom s =) 9 i. aval a s = Some i

vars b ✓ dom s =) 9 bv. bval b s = Some bv

D A c A 0 =) A ✓ A 0

336



11 Definite Initialization Analysis

12 Live Variable Analysis

13 Information Flow Analysis

337



Motivation

Consider the following program (where x 6= y):

x ::= Plus (V y) (N 1);
y ::= N 5;
x ::= Plus (V y) (N 3)

The first assignment is redundant and can be removed
because x is dead at that point.
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Semantically, a variable x is live before command c
if the initial value of x can influence the final state.

A weaker but easier to check condition:

We call x live before c
if there is some potential execution of c
where x is read before it can be overwritten.
Implicitly, every variable is read at the end of c.

Examples: Is x initially dead or live? (x 6= y)
x ::= N 0 /
y ::= V x; y ::= N 0; x ::= N 0 ,
WHILE b DO y ::= V x; x ::= N 1 ,
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At the end of a command, we may be interested in the
value of only some of the variables, e.g. only the global
variables at the end of a procedure.

Then we say that x is live before c relative to the set of
variables X.
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Liveness analysis
L :: com ) vname set ) vname set

L c X = live before c relative to X

L SKIP X = X
L (x ::= a) X = X � {x} [ vars a
L (c1; c2) X = (L c1 � L c2) X
L (IF b THEN c1 ELSE c2) X =

vars b [ L c1 X [ L c2 X

Example:

L (

00y 00 ::= V 00z 00; 00x 00 ::= Plus (V 00y 00) (V 00z 00))
{ 00x 00} = { 00z 00}

341



WHILE b DO c

L w X

X

¬b b
c

L w X must satisfy

vars b ✓ L w X (evaluation of b)

X ✓ L w X (exit)

L c (L w X) ✓ L w X (execution of c)
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We define

L (WHILE b DO c) X = vars b [ X [ L c X

=)
vars b ✓ L w X �
X ✓ L w X �
L c (L w X) ✓ L w X ?
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L SKIP X = X
L (x ::= a) X = X � {x} [ vars a
L (c1; c2) X = (L c1 � L c2) X
L (IF b THEN c1 ELSE c2) X = vars b [ L c1 X [ L c2 X

L (WHILE b DO c) X = vars b [ X [ L c X

Example:

L (WHILE Less (V 00x 00) (V 00x 00) DO 00y 00 ::= V 00z 00)
{ 00x 00} = { 00x 00, 00z 00}

344



Gen/kill analyses

A data-flow analysis A :: com ) T set ) T set
is called gen/kill analysis
if there are functions gen and kill such that

A c X = X � kill c [ gen c

Gen/kill analyses are extremely well-behaved, e.g.

X1 ✓ X2 =) A c X1 ✓ A c X2

A c (X1 \ X2) = A c X1 \ A c X2

Many standard data-flow analyses are gen/kill.
In particular liveness analysis.
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Liveness via gen/kill

kill :: com ) vname set
kill SKIP = {}
kill (x ::= a) = {x}
kill (c1; c2) = kill c1 [ kill c2
kill (IF b THEN c1 ELSE c2) = kill c1 \ kill c2
kill (WHILE b DO c) = {}
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gen :: com ) vname set

gen SKIP = {}
gen (x ::= a) = vars a
gen (c1; c2) = gen c1 [ (gen c2 � kill c1)
gen (IF b THEN c1 ELSE c2) =

vars b [ gen c1 [ gen c2
gen (WHILE b DO c) = vars b [ gen c
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L c X = X � kill c [ gen c

Proof by induction on c.

=)

L c (L w X) ✓ L w X
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Digression:
definite initialization via gen/kill

A c X: the set of variables initialized after c
if X was initialized before c

How to obtain A c X = X � kill c [ gen c:

gen SKIP = {}
gen (x ::= a) = {x}
gen (c1; c2) = gen c1 [ gen c2
gen (IF b THEN c1 ELSE c2) = gen c1 \ gen c2
gen (WHILE b DO c) = {}

kill c = {}
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(.,.) ) . and L should roughly be related like this:

The value of the final state on X
only depends on
the value of the initial state on L c X.

Put di↵erently:

If two initial states agree on L c X
then the corresponding final states agree on X.
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Equality on

An abbreviation:

f = g on X ⌘ 8 x 2 X. f x = g x

Two easy theorems (in theory Vars):

s1 = s2 on vars a =) aval a s1 = aval a s2
s1 = s2 on vars b =) bval b s1 = bval b s2
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Soundness of L

If (c, s) ) s 0 and s = t on L c X
then 9 t 0. (c, t) ) t 0 ^ s 0 = t 0 on X.

Proof by rule induction.
For the two WHILE cases we do not need the definition
of L w but only the characteristic property

vars b [ X [ L c (L w X) ✓ L w X
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Optimality of L w

The result of L should be as small as possible: the more
dead variables, the better (for program optimization).

L w X should be the least set such that
vars b [ X [ L c (L w X) ✓ L w X.

Follows easily from L c X = X � kill c [ gen c:

vars b [ X [ L c P ✓ P =)
L (WHILE b DO c) X ✓ P
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Bury all assignments to dead variables:

bury :: com ) vname set ) com

bury SKIP X = SKIP
bury (x ::= a) X = if x 2 X then x ::= a else SKIP
bury (c1; c2) X = bury c1 (L c2 X); bury c2 X
bury (IF b THEN c1 ELSE c2) X =

IF b THEN bury c1 X ELSE bury c2 X
bury (WHILE b DO c) X =

WHILE b DO bury c (vars b [ X [ L c X)
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Soundness of bury

(bury c UNIV, s) ) s 0  ! (c, s) ) s 0

where UNIV is the set of all variables.

The two directions need to be proved separately.
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(c, s) ) s 0 =) (bury c UNIV, s) ) s 0

Follows from generalized statement:

If (c, s) ) s 0 and s = t on L c X
then 9 t 0. (bury c X, t) ) t 0 ^ s 0 = t 0 on X.

Proof by rule induction, like for soundness of L.
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(bury c UNIV, s) ) s 0 =) (c, s) ) s 0

Follows from generalized statement:

If (bury c X, s) ) s 0 and s = t on L c X
then 9 t 0. (c, t) ) t 0 ^ s 0 = t 0 on X.

Proof very similar to other direction, but needs inversion
lemmas for bury for every kind of command, e.g.

(bc1; bc2 = bury c X) =
(9 c1 c2.

c = c1; c2 ^
bc2 = bury c2 X ^ bc1 = bury c1 (L c2 X))
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Terminology

Let f :: t ) t and x :: t.

If f x = x then x is a fixed point of f.

Let  be a partial order on t, eg ✓ on sets.

If f x  x then x is a post-fixed point (pfp) of f.
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Application to L w

Remember the specification of L w:

vars b [ X [ L c (L w X) ✓ L w X

This is the same as saying that L w X should be a pfp of

�P. vars b [ X [ L c P

and in particular of L c.
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True liveness
L (

00x 00 ::= V 00y 00) {} = { 00y 00}
But 00y 00 is not truly live: it is assigned to a dead variable.

Problem: L (x ::= a) X = X � {x} [ vars a

Better:

L (x ::= e) X =

(if x 2 X then X � {x} [ vars e else X)

But then

L (WHILE b DO c) X = vars b [ X [ L c X

is not correct anymore.
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L (x ::= e) X =

(if x 2 X then X � {x} [ vars e else X)

L (WHILE b DO c) X = vars b [ X [ L c X

Let w = WHILE b DO c
where b = Less (N 0) (V y)
and c = y ::= V x; x ::= V z
and distinct [x, y, z]

Then L w {y} = {x, y}, but z is live before w !

{x} y ::= V x {y} x ::= V z {y}
=) L w {y} = {y} [ {y} [ {x}
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b = Less (N 0) (V y)
c = y ::= V x; x ::= V z

L w {y} = {x, y} is not a pfp of L c:

{x, z} y ::= V x {y, z} x ::= V z {x, y}
L c {x, y} = {x, z} 6✓ {x, y}
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L w for true liveness

Define L w X as the least pfp of
�P. vars b [ X [ L c P
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Existence of least fixed points

Theorem (Knaster-Tarski) Let f :: t set ) t set.
If f is monotone (X ✓ Y =) f(X) ✓ f(Y ))
then

lfp(f) :=
\

{P | f(P ) ✓ P}

is the least fixed and post-fixed point of f .
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Proof of Knaster-Tarski

lfp(f) :=
\

{P | f(P ) ✓ P}

• f (lfp f) ✓ lfp f

• lfp f is the least post-fixed point of f

• lfp f ✓ f (lfp f)

• lfp f is the least fixed point of f
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Definition of L

L (x ::= e) X =

(if x 2 X then X � {x} [ vars e else X)

L (WHILE b DO c) X = lfp f
w

where f
w

= (�P. vars b [ X [ L c P)

Lemma L c is monotone.

Proof by induction on c using that lfp is monotone:
lfp f ✓ lfp g if for all X, f X ✓ g X

Corollary f
w

is monotone.
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Computation of lfp

Theorem Let f :: t set ) t set. If

• f is monotone: X ✓ Y =) f(X) ✓ f(Y )

• and the chain {} ✓ f({}) ✓ f(f({})) ✓ . . .
stabilizes after a finite number of steps,
i.e. fk+1

({}) = fk

({}) for some k,

then lfp(f) = fk

({}).
Proof Show f i

({}) ✓ p for any pfp p of f
(by induction on i).
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Computation of lfp fw
f
w

= (�P. vars b [ X [ L c P)

The chain {} ✓ f
w

{} ✓ f 2
w

{} ✓ . . . must stabilize:

Let vars c be the variables read in c.

Lemma L c X ✓ vars c [ X

Proof by induction on c

Let V
w

= vars b [ vars c [ X

Corollary P ✓ V
w

=) f
w

P ✓ V
w

Hence fk

w

{} stabilizes for some k  |V
w

|.
More precisely: k  |vars c| + 1

because f
w

{} ◆ vars b [ X.
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Example
Let w = WHILE b DO c
where b = Less (N 0) (V y)
and c = y ::= V x; x ::= V z

To compute L w {y} we iterate f
w

P = {y} [ L c P:

f
w

{} = {y} [ L c {} = {y}:
{} y ::= V x {} x ::= V z {}

f
w

{y} = {y} [ L c {y} = {x, y}:
{x} y ::= V x {y} x ::= V z {y}

f
w

{x, y} = {y} [ L c {x,y} = {x, y, z}:
{x, z} y ::= V x {y, z} x ::= V z {x, y}
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Computation of lfp in Isabelle

From the library theory While Combinator:

while :: (

0a ) bool) ) (

0a ) 0a) ) 0a ) 0a

while b f s = (if b s then while b f (f s) else s)

Lemma Let f :: t set ) t set. If

• f is monotone: X ✓ Y =) f(X) ✓ f(Y )

• and bounded by some finite set C:
X ✓ C =) f X ✓ C

then lfp f = while (�X. f X 6= X) f {}
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Limiting the number of iterations
Fix some small k (eg 2) and define Lb like L except

Lb w X =

⇢
gi
w

{} if gi+1
w

{} = gi
w

{} for some i < k
V

w

otherwise

where g
w

P = vars b [ X [ Lb c P

Theorem L c X ✓ Lb c X

Proof by induction on c. In the WHILE case:

If Lb w X = gi
w

{}: 8P. L c P ✓ Lb c P (IH) =)
8P. f

w

P ✓ g
w

P =) f
w

(gi
w

{}) = g
w

(gi
w

{}) = gi
w

{}
=) L w X = lfp f

w

✓ gi
w

{} = Lb w X

If Lb w X = V
w

: L w X ✓ V
w

(by Lemma)
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Comparison of analyses

• Definite initialization analysis is a
forward must analysis:

• it analyses the executions starting from some point,
• variables must be assigned (on every program path)

before they are used.

• Live variable analysis is a
backward may analysis:

• it analyses the executions ending in some point,
• live variables may be used (on some program path)

before they are assigned.
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Comparison of DFA frameworks

Program representation:

• Traditionally (e.g. Aho/Sethi/Ullman), DFA is
performed on control flow graphs (CFGs).
Application: optimization of intermediate or
low-level code.

• We analyse structured programs.
Application: source-level program optimization.
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The aim:
Ensure that programs protect private data
like passwords, bank details, or medical records.
There should be no information flow
from private data into public channels.

This is know as information flow control.
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Language based security is an approach to information
flow control where data flow analysis is used to determine
whether a program is free of illicit information flows.

LBS guarantees confidentiality by program analysis,
not by cryptography.

These analyses are often expressed as type systems.
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Security levels

• Program variables have
security/confidentiality levels.

• Security levels are partially ordered:
l < l0 means that l is less confidential than l0.

• We identify security levels with nat.
Level 0 is public.

• Other popular choices for security levels:
• only two levels, high and low.
• the set of security levels is a lattice.
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Two kinds of illicit flows

Explicit: low := high

Implicit: if high1 = high2 then low := 1
else low := 0
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Noninterference

High variables do not interfere with low ones.

A variation of confidential input does not cause
a variation of public output.

Program c guarantees noninterference i↵ for all s1, s2:

If s1 and s2 agree on low variables
(but may di↵er on high variables!),
then the states resulting from executing (c, s1)
and (c, s2) must also agree on low variables.
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Security Levels

Security levels:

type_synonym level = nat

Every variable has a security level:

sec :: vname ) level

No definition is needed. Except for examples.
Hence we define (arbitrarily)

sec x = length x
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Security Levels on aexp

The security level of an expression is the maximal
security level of any of its variables.

sec :: aexp ) level

sec (N n) = 0
sec (V x) = sec x
sec (Plus a b) = max (sec a) (sec b)
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Security Levels on bexp

sec :: bexp ) level

sec (Bc v) = 0
sec (Not b) = sec b
sec (And b1 b2) = max (sec b1) (sec b2)
sec (Less a b) = max (sec a) (sec b)
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Security Levels on States
Agreement of states up to a certain level:

s1 = s2 ( l) ⌘ 8 x. sec x  l �! s1 x = s2 x

s1 = s2 (< l) ⌘ 8 x. sec x < l �! s1 x = s2 x

Noninterference lemmas for expressions:

s1 = s2 ( l) sec a  l

aval a s1 = aval a s2

s1 = s2 ( l) sec b  l

bval b s1 = bval b s2

388



13 Information Flow Analysis
Secure IMP
A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

389



Security Type System
Explicit flows are easy. How to check for implicit flows:

Carry the security level of the boolean expressions around
that guard the current command.

The well-typedness predicate:

l ` c

Intended meaning:
“In the context of boolean expressions of level  l,
command c is well-typed.”

Hence:
“Assignments to variables of level < l are forbidden.”
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Well-typed or not?

Let c = IF Less (V 00x1 00) (V 00x 00)
THEN 00x1 00 ::= N 0
ELSE 00x1 00 ::= N 1

1 ` c ? Yes

2 ` c ? Yes

3 ` c ? No
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The type system
l ` SKIP

sec a  sec x l  sec x

l ` x ::= a

l ` c1 l ` c2
l ` c1; c2

max (sec b) l ` c1 max (sec b) l ` c2
l ` IF b THEN c1 ELSE c2

max (sec b) l ` c

l ` WHILE b DO c
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Remark:

l ` c is syntax-directed and executable.
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Anti-monotonicity

l ` c l 0  l

l 0 ` c

Proof by . . . as usual.

This is often called a subsumption rule
because it says that larger levels subsume smaller ones.
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Confinement

If l ` c then c cannot modify variables of level < l:

(c, s) ) t l ` c

s = t (< l)

The e↵ect of c is confined to variables of level � l.

Proof by . . . as usual.
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Noninterference

(c, s) ) s 0 (c, t) ) t 0 0 ` c s = t ( l)

s 0 = t 0 ( l)

Proof by . . . as usual.
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The l ` c system is intuitive and executable

• but in the literature a more elegant formulation is
dominant

• which does not need max

• and works for arbitrary partial orders.

This alternative system l `0 c has an explicit
subsumption rule

l `0 c l 0  l

l 0 ` 0 c

together with one rule per construct:
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l `0 SKIP

sec a  sec x l  sec x

l `0 x ::= a

l `0 c1 l `0 c2
l `0 c1; c2

sec b  l l `0 c1 l `0 c2
l `0 IF b THEN c1 ELSE c2

sec b  l l `0 c
l `0WHILE b DO c
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• The subsumption-based system `0
is neither syntax-directed nor directly executable.

• Need to guess when to use the subsumption rule.
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Equivalence of ` and `0

l ` c =) l `0 c

Proof by induction.
Use subsumption directly below IF and WHILE.

l `0 c =) l ` c

Proof by induction. Subsumption already a lemma for `.
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• Systems l ` c and l `0 c are top-down:
level l comes from the context
and is checked at ::= commands.

• System ` c : l is bottom-up:
l is the minimal level of any variable assigned in c
and is checked at IF and WHILE commands.
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` SKIP : l

sec a  sec x

` x ::= a : sec x

` c1 : l1 ` c2 : l2
` c1; c2 : min l1 l2

sec b  min l1 l2 ` c1 : l1 ` c2 : l2
` IF b THEN c1 ELSE c2 : min l1 l2

sec b  l ` c : l

` WHILE b DO c : l
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Equivalence of ` : and `0

` c : l =) l `0 c

Proof by induction.

l `0 c =) ` c : l

Nitpick: 0 `0 00x 00 ::= N 1 but not ` 00x 00 ::= N 1 : 0

l `0 c =) 9 l 0�l. ` c : l 0

Proof by induction.

405



13 Information Flow Analysis
Secure IMP
A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

406



Does noninterference really guarantee
absence of information flow?

(c, s) ) s 0 (c, t) ) t 0 0 ` c s = t ( l)

s 0 = t 0 ( l)

Beware of covert channels!

0 ` WHILE Less (V 00x 00) (N 1) DO SKIP
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A drastic solution:

WHILE-conditions must not depend on
confidential data.

New typing rule:

sec b = 0 0 ` c

0 ` WHILE b DO c

Now provable:

(c, s) ) s 0 0 ` c s = t ( l)

9 t 0. (c, t) ) t 0 ^ s 0 = t 0 ( l)

408



Further extensions

• Time

• Probability

• Quantitative analysis
• More programming language features:

• exceptions
• concurrency
• OO
• . . .
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Volpano and Smith.

For an excellent survey see

Sabelfeld and Myers. Language-Based
Information-Flow Security. 2003.
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We have proved functional programs correct
(e.g. a compiler).

We have proved properties of imperative languages
(e.g. type safety).

But how do we prove properties of imperative programs?
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An example program:

00x 00 ::= N 0; 00y 00 ::= N 0; w n

where

w n ⌘
WHILE Less (V 00y 00) (N n)
DO (

00y 00 ::= Plus (V 00y 00) (N 1);
00x 00 ::= Plus (V 00x 00) (V 00y 00))

At the end of the execution,
variable 00x 00 should contain the sum 1 + . . . + n.
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A proof via operational semantics

Theorem:

(

00x 00 ::= N 0; 00y 00 ::= N 0; w n, s) ) t =)
t 00x 00 =

P
{1..n}

Required Lemma:

(w n, s) ) t =)
t 00x 00 = s 00x 00 +

P
{s 00y 00 + 1..n}

Proved by induction.
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Hoare Logic provides a structured approach for reasoning
about properties of states during program execution:

• Rules of Hoare Logic (almost) syntax directed

• Automates reasoning about program execution

• No explicit induction

But no free lunch:

• Must prove implications between predicates on
states

• Needs invariants.
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This is the standard approach.

Formulas are syntactic objects.

Everything is very concrete and simple.

But complex to formalize.

Hence we soon move to a semantic view of formulas.

Reason for introduction of syntactic approach: didactic

For now, we work with a (syntactically) simplified version
of IMP.
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Hoare Logic reasons about Hoare triples {P} c {Q}
where

• P and Q are syntactic formulas
involving program variables

• P is the precondition, Q is the postcondition

• {P} c {Q} means that
if P is true at the start of the execution,
Q is true at the end of the execution
— if the execution terminates! (partial correctness)

Informal example:

{x = 41} x := x + 1 {x = 42}

Terminology: P and Q are called assertions.
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Examples

{x = 5} ? {x = 10}
{True} ? {x = 10}
{x = y} ? {x 6= y}

Boundary cases:

{True} ? {True}
{True} ? {False}
{False} ? {Q}
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The rules of Hoare Logic

{P} SKIP {P}

{Q[a/x]} x := a {Q}

Notation: Q[a/x] means “Q with a substituted for x”.

Examples: { } x := 5 {x = 5}
{ } x := x+5 {x = 5}
{ } x := 2⇤(x+5) {x > 20}

Intuitive explanation of backward-looking rule:

{Q[a]} x := a {Q[x]}

Afterwards we can replace all occurrences of a in Q by x.
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The assignment axiom allows us
to compute the precondition from the postcondition.

There is a version to compute the postcondition from
the precondition, but it is more complicated. (Exercise!)

424



More rules of Hoare Logic

{P1} c1 {P2} {P2} c2 {P3}
{P1} c1;c2 {P3}

{P ^ b} c1 {Q} {P ^ ¬ b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ^ b} c {P}
{P} WHILE b DO c {P ^ ¬ b}

In the While-rule, P is called an invariant because it is
preserved across executions of the loop body.

425



The consequence rule

So far, the rules were syntax-directed. Now we add

P 0 �! P {P} c {Q} Q �! Q 0

{P 0} c {Q 0}

Preconditions can be strengthened,
postconditions can be weakened.
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Two derived rules

Problem with assignment and While-rule:
special form of pre and postcondition.
Better: combine with consequence rule.

P �! Q[a/x]

{P} x := a {Q}

{P ^ b} c {P} P ^ ¬ b �! Q

{P} WHILE b DO c {Q}
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Example

{True}
x := 0; y := 0;
WHILE y < n DO (y := y+1; x := x+y)

{x =

P
{1..n}}
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Example proof exhibits key properties of Hoare logic:

• Choice of rules is syntax-directed and hence
automatic.

• Proof of “;” proceeds from right to left.

• Proofs require only invariants and
arithmetic reasoning.
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Assertions are predicates on states

assn = state ) bool

Alternative view: sets of states

Semantic approach simplifies meta-theory, our main
objective.
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Validity

|= {P} c {Q}
 !

8 s t. (c, s) ) t �! P s �! Q t

“{P} c {Q} is valid”

In contrast:

` {P} c {Q}

“{P} c {Q} is provable/derivable”
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Provability

` {P} SKIP {P}

` {�s. Q (s[a/x])} x ::= a {Q}
where s[a/x] ⌘ s(x := aval a s)

Example: {x+5 = 5} x := x+5 {x = 5} in semantic
terms:

` {P} x ::= Plus (V x) (N 5) {�t. t x = 5}

where P = (�s. (�t. t x = 5)(s[Plus (V x) (N 5)/x]))
= (�s. (�t. t x = 5)(s(x := s x + 5)))
= (�s. s x + 5 = 5)
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` {P} c1 {Q} ` {Q} c2 {R}
` {P} c1; c2 {R}

` {�s. P s ^ bval b s} c1 {Q}
` {�s. P s ^ ¬ bval b s} c2 {Q}
` {P} IF b THEN c1 ELSE c2 {Q}

` {�s. P s ^ bval b s} c {P}
` {P} WHILE b DO c {�s. P s ^ ¬ bval b s}
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8 s. P 0 s �! P s
` {P} c {Q}
8 s. Q s �! Q 0 s

` {P 0} c {Q 0}
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Hoare_Examples.thy
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Soundness and Completeness
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Soundness

Everything that is provable is valid:

` {P} c {Q} =) |= {P} c {Q}

Proof by induction, with a nested induction in the
While-case.
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Towards completeness: |= =) `
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Weakest preconditions

The weakest precondition
of command c w.r.t. postcondition Q:

wp c Q = (�s. 8 t. (c, s) ) t �! Q t)

The set of states that lead (via c) into Q.

A foundational semantic notion, not merely for the
completeness proof.
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Nice and easy properties of wp
wp SKIP Q = Q

wp (x ::= a) Q = (�s. Q (s[a/x]))

wp (c1; c2) Q = wp c1 (wp c2 Q)

wp (IF b THEN c1 ELSE c2) Q =

(�s. (bval b s �! wp c1 Q s) ^
(¬ bval b s �! wp c2 Q s))

¬ bval b s =) wp (WHILE b DO c) Q s = Q s

bval b s =)
wp (WHILE b DO c) Q s =
wp (c; WHILE b DO c) Q s
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Completeness

|= {P} c {Q} =) ` {P} c {Q}

Proof idea: do not prove ` {P} c {Q} directly,
prove something stronger:

Lemma ` {wp c Q} c {Q}
Proof by induction on c, for arbitary Q.

Now prove ` {P} c {Q} from ` {wp c Q} c {Q}
by the consequence rule because

Fact |= {P} c {Q} =) 8 s. P s �! wp c Q s
Follows directly from defs of |= and wp.
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` {P} c {Q}  ! |= {P} c {Q}

Proving program properties by Hoare logic (`)
is just as powerful as by operational semantics (|=).
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WARNING

Most texts that discuss completeness of Hoare logic
state or prove that Hoare logic is only “relatively
complete” but not complete.

Reason: the standard notion of completeness assumes
some abstract mathematical notion of |=.

Our notion of |= is defined within the same (limited)
proof system (for HOL) as `.
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14 Partial Correctness

15 Verification Conditions

16 Total Correctness
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Idea:
Reduce provability in Hoare logic to provability
in the assertion language:
automate the Hoare logic part of the problem.

More precisely:

Generate an assertion C, the verification
condition, from {P} c {Q} such that
` {P} c {Q} i↵ C is provable.

Method:
Simulate syntax-directed application of Hoare
logic rules. Collect all assertion language side
conditions.
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A problem: loop invariants

Where do they come from?

A trivial solution:

Let the user provide them!

How?

Each loop must be annotated with its invariant!
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How to synthesize loop invariants automatically
is an important research problem.

Which we ignore for the moment.

But come back to later.
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Terminology:

VCG = Verification Condition Generator

All successful verification technology for imperative
programs relies on

• VCGs (of one kind or another)

• and powerful (semi-)automatic theorem provers.
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The (approx.) plan of attack

1 Introduce annotated commands with loop invariants

2 Define functions for computing
• weakest preconditions: pre :: com ) assn ) assn
• verification conditions: vc :: com ) assn ) assn

3 Soundness: vc c Q =) ` { ? } c {Q}

4 Completeness: if ` {P} c {Q} then c can be
annotated (becoming c 0) such that vc c 0 Q.

The details are a bit di↵erent . . .
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Annotated commands

Like commands, except for While:

datatype acom = ASKIP

| Aassign vname aexp

| Aseq acom acom

| Aif bexp acom acom

| Awhile assn bexp acom

Concrete syntax: like commands, except for WHILE:

{I} WHILE b DO c
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Weakest precondition
pre :: acom ) assn ) assn

pre ASKIP Q = Q

pre (x ::= a) Q = (�s. Q (s[a/x]))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q =

(�s. (bval b s �! pre c1 Q s) ^
(¬ bval b s �! pre c2 Q s))

pre ({I} WHILE b DO c) Q = I
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Warning

In the presence of loops,
pre c may not be the weakest precondition

but may be anything!
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Verification condition
vc :: acom ) assn ) assn

vc ASKIP Q = (�s. True)

vc (x ::= a) Q = (�s. True)

vc (c1; c2) Q =

(�s. vc c1 (pre c2 Q) s ^ vc c2 Q s)

vc (IF b THEN c1 ELSE c2) Q =

(�s. vc c1 Q s ^ vc c2 Q s)

vc ({I} WHILE b DO c) Q =

(�s. (I s ^ ¬ bval b s �! Q s) ^
(I s ^ bval b s �! pre c I s) ^ vc c I s)
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Verification conditions only arise from loops:

• the invariant must be invariant

• and it must imply the postcondition.

Everything else in the definition of vc is just bureaucracy:
collecting assertions and passing them around.
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Hoare triples operate on com,
functions pre and vc operate on acom.
Therefore we define

strip :: acom ) com

strip ASKIP = SKIP
strip (x ::= a) = x ::= a
strip (c1; c2) = strip c1; strip c2
strip (IF b THEN c1 ELSE c2) =
IF b THEN strip c1 ELSE strip c2
strip ({I} WHILE b DO c) = WHILE b DO strip c
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Soundness of vc & pre w.r.t. `
8 s. vc c Q s =) ` {pre c Q} strip c {Q}

Proof by induction on c, for arbitrary Q.

Corollary:

(8 s. vc c Q s) ^ (8 s. P s �! pre c Q s) =)
` {P} strip c {Q}

How to prove some ` {P} c0 {Q}:
• Annotate c0 yielding c, i.e. strip c = c0.
• Prove Hoare-free premise of corollary.

But is premise provable if ` {P} c0 {Q} is?
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(8 s. vc c Q s) ^ (8 s. P s �! pre c Q s) =)
` {P} strip c {Q}

Why could premise not be provable
although conclusion is?

• Some annotation in c is not invariant.

• vc or pre are wrong
(e.g. accidentally always produce False).

Therefore we prove completeness:
suitable annotations exist such that premise is provable.
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Completeness of vc & pre w.r.t. `

` {P} c {Q} =)
9 c 0. strip c 0 = c ^

(8 s. vc c 0 Q s) ^ (8 s. P s �! pre c 0 Q s)

Proof by rule induction. Needs two monotonicity
lemmas:

[[8 s. P s �! P 0 s; pre c P s]] =) pre c P 0 s

[[8 s. P s �! P 0 s; vc c P s]] =) vc c P 0 s
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14 Partial Correctness

15 Verification Conditions

16 Total Correctness
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• Partial Correctness:
if command terminates, postcondition holds

• Total Correctness:
command terminates and postcondition holds

Total Correctness = Partial Correctness + Termination

Formally:

|=
t

{P} c {Q} ⌘ 8 s. P s �! (9 t. (c, s) ) t ^ Q t)

Assumes that semantics is deterministic!

Exercise: Reformulate for nondeterministic language
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`t: A proof system
for total correctness

Only need to change the While-rule.

Some measure function state ) nat
must decrease with every loop iteration

^
n. `t {�s. P s ^ bval b s ^ f s = n} c {�s. P s ^ f s < n}
`t {P} WHILE b DO c {�s. P s ^ ¬ bval b s}
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HoareT.thy

Example
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Soundness

`
t

{P} c {Q} =) |=
t

{P} c {Q}

Proof by induction, with a nested induction (on what?)
in the While-case.
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Completeness

|=
t

{P} c {Q} =) `
t

{P} c {Q}

Follows easily from

`
t

{wp
t

c Q} c {Q}

where

wp
t

c Q ⌘ �s. 9 t. (c, s) ) t ^ Q t.
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Proof of `
t

{wp
t

c Q} c {Q} is by induction on c.

In the WHILE b DO c case, let f s (in the `
t

rule for
While) be the number of iterations that the loop needs if
started in state s.

This f depends on b and c and is definable in HOL.
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Part V

Abstract Interpretation
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• Abstract interpretation
is a generic approach to static program analysis.

• It subsumes and improves our earlier approaches.

• Aim: For each program point, compute the possible
values of all variables

• Method: Execute/interpret program with abstract
instead of concrete values, eg intervals instead of
numbers.
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Applications: Optimization

• Constant folding

• Unreachable and dead code elimination

• Array access optimization:
a[i] := 1; a[j] := 2; x := a[i] ;
a[i] := 1; a[j] := 2; x := 1
if i 6= j

• . . .
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Applications:
Debugging/Verification

Detect presence or absence of certain runtime
exceptions/errors:

• Interval analysis: i 2 [m,n]:
• No division by 0 in e/i if 0 /2 [m,n]
• No ArrayIndexOutOfBoundsException in a[i]

if 0  m ^ n < a.length
• . . .

• Null pointer analysis

• . . .
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Precision
A consequence of Rice’s theorem:

In general, the possible values of a variable
cannot be computed precisely.

Program analyses overapproximate: they compute a
superset of the possible values of a variable.

If an analysis says that some value/error/exception

• cannot arise, this is definitely the case.

• can arise, this is only potentially the case.
Beware of false alarms because of
overapproximation.
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Error

Program
Analysis

No Alarm False Alarm True Alarm
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Annotated commands

Like in Hoare logic, we annotate

{ . . . }

program text with semantic information.

Not just loops but also all intermediate program points,
for example:

x := 0 { . . . }; y := 0 { . . . }
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Annotated WHILE
View

{Inv}
WHILE b DO {P} c
{Q}

as a control flow graph

Inv

Q P

¬b b
c

with annotated nodes
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The starting point:
Collecting Semantics

Collects all possible states for each program point:

x := 0 { <x := 0> } ;
{ <x := 0>, <x := 2>, <x := 4> }
WHILE x < 3
DO { <x := 0>, <x := 2> }
x := x+2 { <x := 2>, <x := 4> }

{ <x := 4> }
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Infinite sets of states:

{. . . , <x := �1>, <x := 0>, <x := 1>, . . . }
WHILE x < 3
DO { . . . , <x := 1>, <x := 2> }
x := x+2 { . . . , <x := 3>, <x := 4> }

{ <x := 3>, <x := 4>, . . . }
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Multiple variables:

x := 0; y := 0 { <x:=0, y:=0> } ;
{ <x:=0, y:=0>, <x:=2, y:=1>, <x:=4, y:=2> }
WHILE x < 3
DO { <x:=0, y:=0>, <x:=2, y:=1> }
x := x+2; y := y+1
{ <x:=2, y:=1>, <x:=4, y:=2> }

{ <x:=4, y:=2> }
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A first approximation

(vname ) val) set ; vname ) val set

x := 0 { <x := {0}> } ;
{ <x := {0,2,4}> }
WHILE x < 3
DO { <x := {0,2}> }
x := x+2 { <x := {2,4}> }

{ <x := {4}> }
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Loses relationships between variables
but simplifies matters a lot.

Example:

{ <x:=0, y:=0>, <x:=1,y:=1> }
is approximated by

<x:={0,1}, y:={0,1}>
which also subsumes

<x:=0, y:=1> and <x:=1,y:=0>.
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Abstract Interpretation

Approximate sets of concrete values by abstract values

Example: approximate sets of numbers by intervals

Execute/interpret program with abstract values
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Example
Consistently annotated program:

x := 0 { <x := [0,0]> } ;
{ <x := [0,4]> }
WHILE x < 3
DO { <x := [0,2]> }
x := x+2 { <x := [2,4]> }

{ <x := [3,4]> }

The annotations are computed by

• starting from an un-annotated program and

• iterating abstract execution

• until the annotations stabilize.
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x := 0

WHILE x < 3
DO
x := x+2
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Concrete syntax
0a acom ::= SKIP { 0a } | string ::= aexp { 0a }

| 0a acom ;

0a acom

| IF bexp THEN { 0a } 0a acom
ELSE { 0a } 0a acom

{ 0a }
| { 0a }

WHILE bexp DO { 0a } 0a acom
{ 0a }

0a: type of annotations

Example: 00x 00 ::= N 1 {9}; SKIP {6} :: nat acom
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Abstract syntax

datatype

0a acom =

SKIP 0a

| Assign string aexp 0a

| Seq (

0a acom) (

0a acom)

| If bexp 0a (

0a acom)

0a (

0a acom)

0a

| While 0a bexp 0a (

0a acom)

0a
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Auxiliary functions: post

post :: 0a acom ) 0a

post (SKIP {P}) = P

post (x ::= e {P}) = P

post (C1; C2) = post C2

post (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = Q

post ({I} WHILE b DO {P} C {Q}) = Q
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Auxiliary functions: strip

strip ::

0a acom ) com

strip (SKIP {P}) = SKIP

strip (x ::= e {P}) = x ::= e

strip (C1; C2) = strip C1; strip C2

strip (IF b THEN {P1} C1 ELSE {P2} C2 {P})
= IF b THEN strip C1 ELSE strip C2

strip ({I} WHILE b DO {P} C {Q})
= WHILE b DO strip C

We call C and C 0 strip-equal i↵ strip C = strip C 0.
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Auxiliary functions: anno

anno ::

0a ) com ) 0a acom

anno A SKIP = SKIP {A}
anno A (x ::= e) = x ::= e {A}
anno A (c1; c2) = anno A c1; anno A c2
anno A (IF b THEN c1 ELSE c2) =
IF b THEN {A} anno A c1 ELSE {A} anno A c2

{A}
anno A (WHILE b DO c) =
{A} WHILE b DO {A} anno A c {A}
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Auxiliary functions: map acom

map acom :: (

0a ) 0b) ) 0a acom ) 0b acom

map acom f C applies f to all annotations in C
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Auxiliary functions: annos

annos :: 0a acom ) 0a list

annos C is the list (in some order) of annotations of C
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Annotate commands with the set of states
that can occur at each annotation point.

The annotations are generated iteratively:

step :: state set ) state set acom ) state set acom

Each step executes all atomic commands simultaneously,
propagating the annotations one step further.

start states
flowing into the command
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step

step S (SKIP { }) = SKIP {S}

step S (x ::= e { }) =
x ::= e {{s(x := aval e s) |s. s 2 S}}

step S (C1; C2) = step S C1; step (post C1) C2

step S (IF b THEN {P1} C1 ELSE {P2} C2 { }) =
IF b THEN {{s 2 S. bval b s}} step P1 C1

ELSE {{s 2 S. ¬ bval b s}} step P2 C2

{post C1 [ post C2}
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step

step S ({I} WHILE b DO {P} C { }) =
{S [ post C}
WHILE b
DO {{s 2 I. bval b s}}

step P C
{{s 2 I. ¬ bval b s}}
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Collecting semantics

View command as a control flow graph

• where you constantly feed in some fixed input set S
(typically all possible states)

• and pump/propagate it around the graph

• until the annotations stabilize —
this may happen in the limit only!

Stabilization means fixed point:

step S C = C
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Collecting_Examples.thy
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Abstract example

Let C = { I }
WHILE b
DO { P } C0

{ Q }

step S C = C means

I = S [ post C0

P = {s 2 I. bval b s}
C0 = step P C0

Q = {s 2 I. ¬ bval b s}

Fixed point = solution of equation system
Iteration is just one way of solving equations
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Why least fixed point?

{ I }
WHILE true
DO { I } SKIP { I }
{ {} }

Is fixed point of step {} for every I

But the “reachable” fixed point is I = {}
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Complete lattice

Definition

A type 0a with a partial order  is a complete lattice if
every set S ::

0a set has a greatest lower bound l :: 0a:

• 8 s2S. l  s

• If 8 s2S. l 0  s then l 0  l

The greatest lower bound (infimum) of S is often
denoted by

d
S.

Fact Type 0a set is a complete lattice
where

T
is the infimum.
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Lemma In a complete lattice, every set S of elements
also has a least upper bound (supremum)

F
S :

• 8 s 2 S. s 
F

S

• If 8 s2S. s  u then
F

S  u

The least upper bound is the greatest lower bound
of all upper bounds:

F
S =

d
{u. 8 s 2 S. s  u}.

Thus complete lattices can be defined via the existence
of all infima or all suprema or both.
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Existence of least fixed points

Definition A function f on a partial order  is
monotone if x  y =) f x  f y.

Theorem (Knaster-Tarski) Every monotone function
on a complete lattice has the least (post-)fixed point

d
{p. f p  p}.

Proof just like the version for sets.
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Ordering 0a acom

Any ordering on 0a can be lifted to 0a acom by
comparing the annotations of strip-equal commands:

SKIP {P}  SKIP {P 0}  ! P  P 0

x ::= e {P}  x 0 ::= e 0 {P 0}  !
x = x 0 ^ e = e 0 ^ P  P 0

C1; C2  C 01; C
0
2  ! C1  C 01 ^ C2  C 02

...
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Ordering 0a acom

For all other (not strip-equal) commands:

c  c 0  ! False

Example:

x ::= N 0 {{a}}  x ::= N 0 {{a, b}}  ! True

x ::= N 0 {{a}}  x ::= N 0 {{}}  ! False

x ::= N 0 {S}  x ::= N 1 {S}  ! False
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The collecting semantics needs to order state set acom.

Annotations are (state) sets ordered by ✓,
which form a complete lattice.

Does state set acom also form a complete lattice?

Almost . . .
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A complication

What is the infimum of SKIP {S} and SKIP {T}?

SKIP {S \ T}

What is the infimum of SKIP {S} and x ::= N 0 {T}?

Only strip-equal commands have an infimum
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It turns out:

• if 0a is a complete lattice,

• then for each c :: com

• the set {C ::

0a acom. strip C = c}
is also a complete lattice

• but the whole type 0a acom is not.

Therefore we make the carrier set explicit.
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Complete lattice as a set
Definition Let 0a be a partially ordered type.
A set L ::

0a set is a complete lattice
if every M ✓ L has a greatest lower bound

d
M 2 L.

Given sets A and B and a function f,
f 2 A ! B means 8 a2A. f a 2 B.

Theorem (Knaster-Tarski)
Let L ::

0a set be a complete lattice
and f 2 L ! L a monotone function.
Then f (restricted to L) has the least fixed point

lfp f =
d

{p 2 L. f p  p}.
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Application to acom

Let 0a be a complete lattice and c :: com.
Then L = {C ::

0a acom. strip C = c}
is a complete lattice.

The infimum of a set M ✓ L is computed “pointwise”:

Annotate c at annotation point p with the
infimum of the annotations of all C 2 M at p.

Example
d

{SKIP {A}, SKIP {B}, . . . }
= SKIP {

d
{A,B, . . . }}

Formally . . .
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Some auxiliary functions:

Selecting subcommands:

sub1 (C1; C2) = C1

sub1 (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = C1

sub1 ({I} WHILE b DO {P} C {Q}) = C

sub2 (C1; C2) = C2

sub2 (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = C2
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Selecting annotations:

anno1 (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = P1

anno1 ({I} WHILE b DO {P} C {Q}) = I

anno2 (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = P2

anno2 ({I} WHILE b DO {P} C {Q}) = P
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The image of a set A under a function f:

f ‘ A = {y. 9 x2A. y = f x}

Predefined in HOL.
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The union of strip-equal acoms:
Union acom :: com ) 0a acom set ) 0a set acom:

Union acom SKIP M = SKIP {post ‘ M}
Union acom (x ::= a) M = x ::= a {post ‘ M}
Union acom (c1; c2) M =

Union acom c1 (sub1 ‘ M); Union acom c2 (sub2 ‘ M)
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Union acom (IF b THEN c1 ELSE c2) M =

IF b THEN {anno1 ‘ M} Union acom c1 (sub1 ‘ M)

ELSE {anno2 ‘ M} Union acom c2 (sub2 ‘ M)

{post ‘ M}

Union acom (WHILE b DO c) M =

{anno1 ‘ M}
WHILE b
DO {anno2 ‘ M}

Union acom c (sub1 ‘ M)

{post ‘ M}
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Lemma Let 0a be a complete lattice and c :: com.
Then L = {C ::

0a acom. strip C = c}
is a complete lattice where the infimum of M ✓ L is

map acom
d

(Union acom c M)

Proof of the infimum properties by induction on c.
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The Collecting Semantics
The underlying complete lattice is now state set.

Therefore L = {C :: state set acom. strip C = c} is a
complete lattice for any c.

Lemma step S 2 L ! L and is monotone.

Therefore Knaster-Tarski is applicable and we define

CS :: com ) state set acom
CS c = lfp c (step UNIV)

[lfp is defined in the context of some lattice L.
Our concrete L depends on c.
Therefore lfp depends on c, too.]
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Relationship to big-step semantics

For simplicity: compare only pre and post-states

Theorem (c, s) ) t =) t 2 post (CS c)

Follows directly from

[[ (c, s) ) t; s 2 S ]] =) t 2 post(lfp c (step S))
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Proof of

[[ (c, s) ) t; s 2 S ]] =) t 2 post(lfp c (step S))

uses

post(lfp c f) =
T
{post C |C. strip C = c ^ f C  C}

and

[[(c, s) ) t; strip C = c; s 2 S; step S C  C]]
=) t 2 post C

which is proved by induction on the big step.
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In a nutshell:
collecting semantics overapproximates big-step semantics

Later:
program analysis overapproximates collecting semantics

Together:
program analysis overapproximates big-step semantics

The other direction

t 2 post(lfp c (step S)) =) 9 s2S. (c,s) ) t

is also true but is not proved in this course.
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Approximating
the Collecting semantics

A conceptual step:

(vname ) val) set ; vname ) val set

A domain-specific step:

val set ; 0av

where 0av is some ordered type of abstract values
that we can compute on.
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Example: parity analysis
Abstract values:
datatype parity = Even | Odd | Either

Either Z

Even Odd 2Z 2Z+ 1

concretization function �
parity
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A concretisation function �
maps an abstract value to a set of concrete values

Bigger abstract values represent more concrete values
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Preorder

A type 0a is a preorder if

• there is a predicate v ::

0a ) 0a ) bool

• that is reflexive (x v x) and

• transitive ([[x v y; y v z]] =) x v z)

A partial order is also antisymmetric
([[x v y; y v x]] =) x = y)
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Pre vs partial

Partial orders are technically simpler.

Preorders are more liberal:

• they allow di↵erent representations for the same
abstract element.
Example: the intervals [1, 0] and [2, 0] both
represent the empty interval.

• Instead of x = y, test for x v y ^ y v x.
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Example: parity

Either

Even Odd
v w

Fact Type parity is a partial order.
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Semilattice
A type 0a is a semilattice (with top element) if

• it is a preorder and

• there is a least upper bound operation
t ::

0a ) 0a ) 0a

x v x t y y v x t y

[[x v z; y v z]] =) x t y v z

• and a top element > ::

0a
x v >

Application: abstract [, join two computation paths
We often call t the join operation.
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Lemma If 0a is a semilattice where v is actually a
partial order, then the least upper bound of two elements
is uniquely determined (and similarly the top element).

v uniquely determines t and >
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Example: parity

Either

Even Odd
v w

Fact Type parity is a semilattice with top element.
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Isabelle’s type classes

A type class is defined by

• a set of required functions (the interface)

• and a set of axioms about those functions

Examples class preord: preorders
class semilattice: semilattices

A type belongs to some class if

• the interface functions are defined on that type

• and satisfy the axioms of the class (proof needed!)

Notation: ⌧ :: C means type ⌧ belongs to class C
Example: parity :: semilattice
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Abs_Int0.thy
Abs_Int1_parity.thy

Orderings
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From abstract values
to abstract states

Need to abstract collecting semantics:

state set

• First attempt:
0av st = vname ) 0av

where 0av is the type of abstract values

• Problem: cannot abstract empty set of states
(unreachable program points!)

• Solution: type 0av st option
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Lifting semilattice and � to
0av st option

Lemma If 0a :: semilattice then 0b ) 0a :: semilattice.
Proof

(f v g) = (8 x. f x v g x)
f t g = (�x. f x t g x)
> = (�x. >)

definition

� fun :: (

0a ) 0c set) ) (

0b ) 0a) ) (

0b ) 0c)set
where � fun � F = {f. 8 x. f x 2 � (F x)}
Lemma If � is monotone then � fun � is monotone.
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Lemma

If 0a :: semilattice then 0a option :: semilattice.
Proof

(Some x v Some y) = (x v y)
(None v ) = True
(Some v None) = False

Some x t Some y = Some (x t y)
None t y = y
x t None = x

> = Some >

Corollary

If 0a :: semilattice then 0a st option :: semilattice.
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fun � option :: (

0a ) 0c set) ) 0a option ) 0c set
where

� option � None = {}
� option � (Some a) = � a

Lemma If � is monotone then � option � is monotone.
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0a acom

Lemma If 0a :: preord then 0a acom :: preord.
Proof v is lifted from 0a to 0a acom just like .
Preorder is enough, semilattice not needed.

Lifting � ::

0a ) 0c to 0a acom ) 0c acom is easy:
map acom

Lemma If � is monotone then map acom � is
monotone.
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• Stepwise development of a
generic abstract interpreter
as a parameterized module

• Parameters/Input: abstract type of values
together with abstractions of the operations on
concrete type val = int.

• Result/Output: abstract interpreter
that approximates the collecting semantics
by computing on abstract values.

• Realization in Isabelle as a locale
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Parameters (I)

Abstract values: type 0av :: semilattice
Concretization function: � ::

0av ) val set

Assumptions: a v b =) � a ✓ � b
� > = UNIV
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Parameters (II)

Abstract arithmetic: num 0 :: val ) 0av
plus 0 :: 0av ) 0av ) 0av

Intention: num 0 abstracts the meaning of N
plus 0 abstracts the meaning of Plus

Required for each constructor of aexp (except V)

Assumptions:
i 2 � (num 0 i)
[[i1 2 � a1; i2 2 � a2]] =) i1 + i2 2 � (plus 0 a1 a2)

The n 2 � a relationship is maintained
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Lifted concretization functions

�
s

::

0av st ) state set
�
s

= � fun �

�
o

::

0av st option ) state set
�
o

= � option �
s

�
c

::

0a st option acom ) state set acom
�
c

c = map acom �
o

c

All of them are monotone.
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Abstract interpretation of aexp

fun aval 0 :: aexp ) 0av st ) 0av

aval 0 (N n) S = num 0 n
aval 0 (V x) S = S x
aval 0 (Plus a1 a2) S = plus 0 (aval 0 a1 S) (aval 0 a2 S)

Correctness of aval 0 wrt aval:

Lemma s 2 �
s

S =) aval a s 2 � (aval 0 a S)

Proof by induction on a
using the assumptions about the parameters.
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Example instantiation with parity

v/t and �
parity

: see earlier

num parity i = (if i mod 2 = 0 then Even else Odd)

plus parity Even Even = Even
plus parity Odd Odd = Even
plus parity Even Odd = Odd
plus parity Odd Even = Odd
plus parity Either y = Either
plus parity x Either = Either
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Example instantiation with parity

Input: � 7! �
parity

num 0 7! num parity
plus 0 7! plus parity

Must prove parameter assumptions

Output: aval 0 7! aval parity

Example The value of

aval parity (Plus (V 00x 00) (V 00x 00))
((� . Either)( 00x 00 := Odd))

is Even.
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Abs_Int1_parity.thy

Locale interpretation

546



Abstract interpretation of bexp

For now, boolean expressions are not analysed.
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Abstract interpretation of com

Abstracting the collecting semantics

step :: ⌧ ) ⌧ acom ) ⌧ acom
where ⌧ = state set

to

step 0 :: ⌧ ) ⌧ acom ) ⌧ acom
where ⌧ =

0av st option
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step 0 S (SKIP { }) = SKIP {S}

step 0 S (x ::= e { }) =
x ::= e
{case S of None ) None
| Some S ) Some (S(x := aval 0 e S))}

step 0 S (C1; C2) = step 0 S C1; step 0 (post C1) C2

step 0 S (IF b THEN {P1} C1 ELSE {P2} C2 { }) =
IF b THEN {S} step 0 P1 C1

ELSE {S} step 0 P2 C2

{post C1 t post C2}

step 0 S ({I} WHILE b DO {P} C { }) =
{S t post C} WHILE b DO {I} step 0 P C {I}
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Example: iterating step parity

(step parity S)k c

where

c = x ::= N 3 {None} ;

{None}
WHILE b DO {None}
x ::= Plus (V x) (N 5) {None}

{None}
S = Some (� . Either)

S
p

= Some ((� . Either)(x := p))
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Correctness of step 0 wrt step

The conretization of step 0 overaproximates step:

Lemma step (�
o

S) (�
c

C)  �
c

(step 0 S C)

where S ::

0av st option
C ::

0av st option acom
Proof by an easy induction on C
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The abstract interpreter

• Ideally: iterate step 0 until a fixed point is reached

• May take too long

• Su�cient: any post-fixed point: step 0 S C v C
Means iteration does not increase annotations,
i.e. annotations are consistent but maybe too big

• Also remember: v only preorder, = too strong
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Unbounded search

From the HOL library:

while option ::

(

0a ) bool) ) (

0a ) 0a) ) 0a ) 0a option

such that

while option b f x =

(if b x then while option b f (f x) else Some x)

and while option b f x = None
if the recursion does not terminate.

553



Post-fixed point:

pfp :: (

0a ) 0a) ) 0a ) 0a option

pfp f = while option (�x. ¬ f x v x) f

Start iteration with least annotated command:

bot c = anno None c
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A transfer lemma

If v ::

0a ) 0a ) bool
 ::

0c ) 0c ) bool (transitive)
f 0 :: 0a ) 0a
f :: 0c ) 0c
g ::

0a ) 0c (monotone)
f (g x)  g (f 0 x) for all x ::

0a
then, if p is a pfp of f 0, g p is a pfp of f.

Proof f (g p)  g (f 0 p) and g (f 0 p)  g p
because f 0 p v p and g is monotone.
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The generic
abstract interpreter

definition AI :: com ) 0av st option acom option
where AI c = pfp (step 0 >) (bot c)

Theorem AI c = Some C =) CS c  �
c

C

Proof From the assumption: C is a pfp of step 0 >.
Because of the correctness of step 0 wrt step,
monotonicity of �

c

and the transfer lemma:
�
c

C is a pfp of step (�
o

>) = step UNIV.
Because CS is the least pfp of step UNIV: CS c  �

c

C.
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Problem

AI is not directly executable

because pfp compares f C v C
where C ::

0av st option acom
which compares functions vname ) 0av
which is (in general) uncomputable: vname is infinite.
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Solution

Program states are finite functions
from the variables actually present in a program.

Thus we replace 0av st = vname ) 0av by

datatype

0av st =
FunDom (vname ) 0av) (vname set)

where FunDom f X represents a function f with an
explicit domain X. In our application X will be finite.
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Projections: fun (FunDom f X) = f
dom (FunDom f X) = X

Update:

update F x y = FunDom ((fun F)(x := y)) (dom F)

Application: domain stays fixed

Concretization:

�
s

F = {f. 8 x 2 dom F. f x 2 � (fun F x)}
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Making 0a st a semilattice

Assuming 0a is a semillatice.
Natural ordering on 0a st:

(F v G) =

(dom F = dom G ^ (8 x2dom F. fun F x v fun G x))

Does not make all of 0a st a semilattice,
F t G exists only if dom F = dom G.
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Generic solution: refine definition of semilattice with
explicit carrier set L (like complete lattice earlier).

This time we make the dependence of L on the context
explicit.

The context is the set of variables X in the program.

Now x v x t y becomes

[[x 2 L X; y 2 L X]] =) x v x t y
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Semilattice with carrier set

• L :: vname set ) 0a set
t ::

0a ) 0a ) 0a
> :: char list set ) 0a

•
[[x 2 L X; y 2 L X]] =) x v x t y
[[x 2 L X; y 2 L X]] =) y v x t y
[[x v z; y v z]] =) x t y v z

x 2 L X =) x v >X

[[x 2 L X; y 2 L X]] =) x t y 2 L X
>X 2 L X

Isabelle class: semilatticeL
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Type st as a semilattice

Lemma If 0a :: semilattice then 0a st :: semilatticeL.
Proof

L X = {F. dom F = X}

(F v G) =

(dom F = dom G ^ (8 x2dom F. fun F x v fun G x))

F t G = FunDom (�x. fun F x t fun G x) (dom F)

>X = FunDom (�x. >) X
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Type option as a semilattice

Lemma

If 0a :: semilatticeL then 0a option :: semilatticeL.
Proof

None 2 L X
(Some x 2 L X) = (x 2 L X)

Operations v and t: see earlier
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Generic abstract interpreter

Everything as before, except

• new definition of st

• for S ::

0av st:
S x ; fun S x
S(x := a) ; update S x a

• AI c = pfp (step 0 >) (bot c) ;
AI c = pfp (step 0 >

c

) (bot c)
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The abstract interpreter is computable

because all the abstract states during its computation
have the finite domain vars c

because the computation starts with >c ::
0av st

and does not involve variables outside vars c.
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Abs_Int1_parity.thy
Abs_Int1_const.thy

Examples

568



Beyond partial correctness

• AI may compute any pfp

• AI may not terminate

The solution: Monotonicity
=)
Precision AI computes least post-fixed points

Termination AI terminates if 0av is of bounded height
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Monotonicity
The monotone framework also demands monotonicity of
abstract arithmetic:

[[a1 v b1; a2 v b2]] =) plus 0 a1 a2 v plus 0 b1 b2

Theorem In the monotone framework, aval 0 is also
monotone

S1 v S2 =) aval 0 e S1 v aval 0 e S2
if S1 2 L X, S2 2 L X, vars e ✓ X

and therefore step 0 is also monotone:

[[S1 v S2; C1 v C2]] =) step 0 S1 C1 v step 0 S2 C2

if S1 2 L X, S2 2 L X, C1 2 L X, C2 2 L X
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Precision: smaller is better

If f is monotone and ? is a least element,
then pfp f ? is a least post-fixed point of f
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Lemma Let v be a preorder on a set L
with least element ? 2 L: x 2 L =) ? v x.
Let f 2 L ! L be a monotone function:
x v y =) f x v f y.
If while option (�x. ¬ f x v x) f ? = Some p
then p is a least post-fixed point of f.
That is, if f q v q for some q 2 L, then p v q.

Proof Clearly f p v p. Given any post-fixed point q 2 L,
property P x = (x 2 L ^ x v q) is an invariant of the
while loop: P ? holds and P x implies f x v f q v q.
Hence upon termination, P p must also hold
and hence p v q.
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Application to

AI c = pfp (step 0 >vars c) (bot c)
pfp f = while option (�x. ¬ f x v x) f

Because bot c is a least element and step 0 is monotone,
AI returns least post-fixed points
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Termination

Definition x < y  ! x v y ^ ¬ y v x

Because step 0 is monotone, starting from bot c generates
an ascending < chain of annotated commands.
We exhibit a measure function m

c

that decreases with
every loop iteration:

C1 < C2 =) m
c

C2 < m
c

C1
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The measure function m
c

is constructed from a measure
function m on 0av in several steps.

Parameters: m ::

0av ) nat
h :: nat

Assumptions: m x  h
x v y =) m y  m x
x < y =) m y < m x

Parameter h is the height of <: every ascending chain
x0 < x1 < . . . has length at most h.

Application to parity and const: h = 1
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Lifting m to abstract states:

m
s

::

0av st ) nat

m
s

S = (

P
x2dom S. m (fun S x))

Lemmas

m
s

x  h ⇤ card X if x 2 L X, finite X

S1 v S2 =) m
s

S2  m
s

S1

S1 < S2 =) m
s

S2 < m
s

S1 if finite (dom S1)
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Lifting m
s

to options:

m
o

:: nat ) 0av st option ) nat

m
o

d (Some S) = m
s

S
m

o

d None = h ⇤ d + 1

Lemmas

m
o

(card X) ost  h ⇤ card X + 1
if ost 2 L X, finite X

o1 v o2 =) m
o

(card X) o2  m
o

(card X) o1
if finite X, o1 2 L X, o2 2 L X

o1 < o2 =) m
o

(card X) o2 < m
o

(card X) o1
if finite X, o1 2 L X, o2 2 L X
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Lifting m
o

to annotated commands:

m
c

::

0av st option acom ) nat

m
c

C =

(

P
i<length (annos C).
m

o

(card (vars (strip C))) (annos C ! i))

Theorems

m
c

C
 length (annos C) ⇤

(h ⇤ card (vars (strip C)) + 1)

if C 2 L (vars (strip C))

C1 < C2 =) m
c

C2 < m
c

C1

if C1 2 L (vars (strip C1)), C2 2 L (vars (strip C2))
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Thus we have not only proved termination but also
complexity:

AI c needs at most p ⇤ (n ⇤ h+ 1) steps

where p = number of annotation in c
n = number of variables in c
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Warning: step 0 is very ine�cient.
It is applied to every subcommand in every step.
Thus the actual complexity of AI is O(p2 ⇤ n ⇤ h)

Better iteration policy:
Ignore subcommands where nothing has changed.

Practical algorithms often use a control flow graph
and a worklist recording the nodes where annotations
have changed.

As usual: e�ciency complicates proofs.
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Abs_Int1_parity.thy
Abs_Int1_const.thy

Termination
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Need to simulate collecting semantics (S :: state set):

{s 2 S. bval b s}

Given S ::

0av st, reduce it to some S 0 v S such that

if s 2 �
s

S and bval b s then s 2 �
s

S 0

• No state satisfying b is lost

• but �
s

S 0 may still contain states not satisfying b.

• Trivial solution: S 0 = S

Computing S 0 from S requires u
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Lattice
A type 0a is a lattice (with top and bottom) if

• it is a semilattice (with top)

• there is a greatest lower bound operation
u ::

0a ) 0a ) 0a

x u y v x x u y v y

[[z v x; z v y]] =) z v x u y

• and a bottom element ? ::

0a
? v x

We often call u the meet operation.

Type class: lattice
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Concretization

We strengthen the abstract interpretation framework by
assuming

• 0av :: lattice

• � a1 \ � a2 ✓ � (a1 u a2)

=) � (a1 u a2) = � a1 \ � a2
=) u is precise!

How about � a1 [ � a2 and � (a1 t a2)?

• � ? = {}
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Backward analysis of aexp

Given e :: aexp
a ::

0av (the intended value of e)
S ::

0av st
restrict S to some S 0 v S such that

{s 2 �
s

S. aval e s 2 � a} ✓ �
s

S 0

Roughly: S 0 overapproximates the subset of S that makes
e evaluate to a.

What if {s 2 �
s

S. aval e s 2 � a} is empty?
Work with 0av st option instead of 0av st
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afilter N

afilter :: aexp ) 0av ) 0av st option ) 0av st option

afilter (N n) a S = (if test num 0 n a then S else None)

An extension of the interface of our framework:

test num 0 :: int ) 0av ) bool

Assumption:

test num 0 n a = (n 2 � a)

Needed only for computability reasons.
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afilter V

afilter (V x) a S =

case S of None ) None
| Some S )

let a 0 = fun S x u a
in if a 0 v ? then None

else Some (update S x a 0)

Avoid ? component in abstract state,
turn abstract state into None instead.

588



afilter Plus
A further extension of the interface of our framework:

filter plus 0 :: 0av ) 0av ) 0av ) 0av ⇥ 0av

Assumption:
filter plus 0 a a1 a2 = (a 01, a

0
2) =)

� a 01 ◆ {i1 2 � a1. 9 i2 2 � a2. i1+i2 2 � a} ^
� a 02 ◆ {i2 2 � a2. 9 i1 2 � a1. i1+i2 2 � a}

Definition:

afilter (Plus e1 e2) a S =

(let (a1, a2) = filter plus 0 a (aval 00 e1 S) (aval 00 e2 S)
in afilter e1 a1 (afilter e2 a2 S))

(Analogously for all other arithmetic operations)
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Backward analysis of bexp

Given b :: bexp
res :: bool (the intended value of b)
S ::

0av st option
restrict S to some S 0 v S such that

{s 2 �
o

S. bval b s = res} ✓ �
o

S 0

Roughly: S 0 overapproximates the subset of S that makes
b evaluate to res.
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bfilter :: bexp ) bool ) 0av st option ) 0av st option

bfilter (Bc v) res S = (if v = res then S else None)

bfilter (Not b) res S = bfilter b (¬ res) S

bfilter (And b1 b2) res S =

if res then bfilter b1 True (bfilter b2 True S)
else bfilter b1 False S t bfilter b2 False S

bfilter (Less e1 e2) res S =

let (a1, a2) = filter less 0 res (aval 00 e1 S) (aval 00 e2 S)
in afilter e1 a1 (afilter e2 a2 S)
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A further extension of the interface of our framework:

filter less 0 :: bool ) 0av ) 0av ) 0av ⇥ 0av

Assumption:

filter less 0 res a1 a2 = (a 01, a
0
2) =)

� a 01 ◆ {i1 2 � a1. 9 i2 2 � a2. (i1<i2) = res} ^
� a 02 ◆ {i2 2 � a2. 9 i1 2 � a1. (i1<i2) = res}
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step 0

step 0 S (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) =
IF b THEN {bfilter b True S} step 0 P1 C1

ELSE {bfilter b False S} step 0 P2 C2

{post C1 t post C2}

step 0 S ({I} WHILE b DO {p} C {Q}) =
{S t post C}
WHILE b
DO {bfilter b True I}

step 0 p C
{bfilter b False I}
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Correctness proof

Almost as before, but with correctness lemmas for afilter

{s 2 �
o

S. aval e s 2 � a} ✓ �
o

(afilter e a S)

if S 2 L X, vars e ✓ X

and bfilter:

{s 2 �
o

S. bv = bval b s} ✓ �
o

(bfilter b bv S)

if S 2 L X, vars b ✓ X
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Summary
Extended interface to abstract interpreter:

• 0av :: lattice
� ? = {} and � a1 \ � a2 ✓ � (a1 u a2)

• test num 0 :: int ) 0av ) bool
test num 0 n a = (n 2 � a)

• filter plus 0 :: 0av ) 0av ) 0av ) 0av ⇥ 0av
[[filter plus 0 a a1 a2 = (a 01, a

0
2);

i1 2 � a1; i2 2 � a2; i1 + i2 2 � a]]
=) i1 2 � a 01 ^ i2 2 � a 02

• filter less 0 :: bool ) 0av ) 0av ) 0av ⇥ 0av
[[filter less 0 (i1 < i2) a1 a2 = (a 01, a

0
2);

i1 2 � a1; i2 2 � a2]]
=) i1 2 � a 01 ^ i2 2 � a 02 595



Abs_Int2_ivl.thy
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The problem

If there are infinite ascending v chains of abstract values
then the abstract interpreter may not terminate.

Canonical example: intervals

[0,0] v [0,1] v [0,2] v [0,3] v . . .

Can happen even if the program terminates!
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Widening

• x0 = ?, xi+1 = f(x
i

)

may not terminate while searching for a pfp:
f(x

i

) v x
i

• Widen in each step: x
i+1 = x

i

5 f(x
i

)

until a pfp is found.
• We assume

• 5 “extrapolates” its arguments: x, y v x5 y
• 5 “jumps” far enough to prevent nontermination
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Example: Widening on intervals

[l1,h1] 5 [l2,h2] = [l,h]

where l = (if l1 > l2 then �1 else l1)
h = (if h1 < h2 then 1 else h1)
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Warning

• x
i+1 = f(x

i

) finds a least pfp
if it terminates, f is monotone, and x0 = ?

• x
i+1 = x

i

5 f(x
i

) may return any pfp
in the worst case >

We win termination, we lose precision
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A widening operator 5 ::

0a ) 0a ) 0a on a preorder
must satisfy x v x 5 y and y v x 5 y.

Widening operators can be extended from 0a to
0a st, 0a option and 0a acom.
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Abstract interpretation
with widening

New assumption: 0av has widening operator

iter widen :: (

0a ) 0a) ) 0a ) 0a option

iter widen f =
while option (�x. ¬ f x v x) (�x. x 5 f x)

Correctness (returns pfp): by definition

Abstract interpretation of c:

iter widen (step 0 >vars c) (bot c)
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Interval example

x ::= N 0 {A0};
{A1}
WHILE Less (V x) (N 100)
DO {A2}

x ::= Plus (V x) (N 1) {A3}
{A4}
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Narrowing

Widening returns a (potentially) imprecise pfp p.

If f is monotone, further iteration improves p:

p w f(p) w f 2
(p) w . . .

and each f i

(p) is still a pfp!

• need not terminate: [0,1] = [1,1] = . . .

• but we can stop at any point!
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A narrowing operator 4 ::

0a ) 0a ) 0a
must satisfy y v x =) y v x 4 y v x.

Lemma Let f be monotone.
If f p v p then f(p 4 f p) v p 4 f p v p

iter narrow f p =

while option (�x. ¬ x v x 4 f x) (�x. x 4 f x) p

If f is monotone and p a pfp of f and the loop terminates,
then (by the lemma) we obtain a pfp of f below p.

Iteration as long as progress is made: x 4 f x < x
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Example: Narrowing on intervals

[l1,h1] 4 [l2,h2] = [l,h]

where l = (if l1 = �1 then l2 else l1)
h = (if h1 = 1 then h2 else h1)
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Abstract interpretation
with widening & narrowing

New assumption: 0av also has a narrowing operator

pfp wn f x =

(case iter widen f x of None ) None
| Some p ) iter narrow f p)

AI wn c = pfp wn (step 0 >vars c) (bot c)

Theorem AI wn c = Some C =) CS c  �
c

C
Proof as before
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Termination

of

while option (�x. P x) (�x. g x)

via measure function m
such that m goes down with every iteration:

P x =) m x > m(g x)

May need some invariant Inv as additional premise:

Inv x =) P x =) m x > m(g x)
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Termination of iter widen

iter widen f =
while option (�x. ¬ f x v x) (�x. x 5 f x)

As before: Assume m ::

0av ) nat such that m x  h
and x v y =) m y  m x
but now ¬ y v x =) m (x 5 y) < m x

Define the same functions m
s

/m
o

/m
c

on top.

Termination of iter widen on 0a st option acom:
Lemma ¬ C2 v C1 =) m

c

(C1 5 C2) < m
c

C1

if C1 2 Lc c, C2 2 Lc c
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Termination of iter narrow

iter narrow f =
while option (�x. ¬ x v x 4 f x) (�x. x 4 f x)

Assume n ::

0av ) nat such that

x v y =) n x  n y
[[y v x; ¬ x v x 4 y]] =) n (x 4 y) < n x

Define n
s

/n
o

/n
c

like m
s

/m
o

/m
c

Termination of iter narrow on 0a st option acom:
Lemma [[ C2 v C1; ¬ C1 v C1 4 C2 ]] =)
n
c

(C1 4 C2) < n
c

C1 if C1 2 Lc c, C2 2 Lc c
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Measuring intervals

m [l,h] = (if l = �1 then 0 else 1) +
(if h = 1 then 0 else 1)

h = 2

n ivl = 2 � m ivl
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Part VI

Extensions of IMP
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25 Procedures and Local Variables
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25 Procedures and Local Variables
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25 Procedures and Local Variables
Introduction
Dynamic Scope for VAR and PROC
Dynamic Scope for VAR, Static Scope for PROC
Static Scope for VAR and PROC
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New commands

Declare local variable: {VAR x;; c}
Define local procedure: {PROC p = c;; c 0}
Call procedure: CALL p
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Concrete syntax

com ::= . . . basic commands . . .

| {VAR vname;; com}
| {PROC pname = com;; com}
| CALL pname
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Abstract syntax

datatype com = . . . basic commands . . .

| Var vname com

| Proc pname com com

| CALL pname
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Scoping

Static scoping
Name n refers to the textually enclosing
declaration of n in the program text.

Dynamic scoping
Name n refers to the most recent declaration
of n during execution.
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Example

{VAR 00x 00;;
{PROC 00p 00 = 00x 00 ::= N 1;;
{PROC 00q 00 = CALL 00p 00;;
{VAR 00x 00;; 00x 00 ::= N 2;
{PROC 00p 00 = 00x 00 ::= N 3;;
CALL 00q 00; 00y 00 ::= V 00x 00}}}}}

What is the final value of variable y ?

• static scope for VAR and PROC

• dynamic scope for VAR and static scope for PROC

• dynamic scope for VAR and PROC
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C does not allow nested procedures,
which simplifies the semantics.

Most functional languages allow nested procedures.

As does Java, via inner classes.

Dynamic scoping is a concept from hell and rarely used.

But its semantics is easy to define
and a good starting point.
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Dynamic Scope for VAR, Static Scope for PROC
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Procedure environment

penv = pname ) com

Big-step semantics:

pe ` (c, s) ) t

where pe :: penv.
Rules for basic commands are upgraded by adding pe `.
Example:

pe ` (c1, s1) ) s2 pe ` (c2, s2) ) s3
pe ` (c1; c2, s1) ) s3
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Rules for new commands

pe ` (c, s) ) t

pe ` ({VAR x;; c}, s) ) t(x := s x)

pe(p := cp) ` (c, s) ) t

pe ` ({PROC p = cp;; c}, s) ) t

pe ` (pe p, s) ) t

pe ` (CALL p, s) ) t

Dynamic scoping because pe(n) and s(n)
are the current values of n w.r.t. execution.
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25 Procedures and Local Variables
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The static environment for a procedure p is the
procedure environment at the point where p is declared,
i.e. the static links to the procedures known at that
point.

Record the static environment for each procedure
together with the procedure body:

penv = pname ) com ⇥ penv

Recursive type synonyms not allowed.
Alternative: organize procedure environment like a stack.

penv = (pname ⇥ com) list

The static environment of p is the penv before (p, ) was
added: pop until (p, ) is found.
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Rules for new commands

pe ` (c, s) ) t

pe ` ({VAR x;; c}, s) ) t(x := s x)

(p, cp) # pe ` (c, s) ) t

pe ` ({PROC p = cp;; c}, s) ) t

(p, c) # pe ` (c, s) ) t

(p, c) # pe ` (CALL p, s) ) t

p 0 6= p pe ` (CALL p, s) ) t

(p 0, c) # pe ` (CALL p, s) ) t
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Separate variable names from their storage addresses.
The same x can have di↵erent addresses at di↵erent
points in the program.

addr = nat

A variable environment associates names with addresses:

venv = vname ) addr

A store associates addresses with values:

store = addr ) val

Note: If s :: store and ve :: venv then s � ve :: state.
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The static environment for each procedure p records
both

• the procedure environment and

• the variable environment

at the point where p is declared.

The procedure environment is recorded as before (in the
stack), the variable environment explicitly:

penv = (pname ⇥ venv ⇥ com) list

Interpretation of (p, ve, c):
variable x in c refers to address ve(x).
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Big-step format
Execution takes place in the context of

• a procedure environment pe

• a variable environment ve

• a free address f

Instead of a state, the semantics transforms a store s:

(pe,ve,f) ` (c, s) ) t

Execution also modifies the context, but input/output
behaviour is captured by the store transformation.

Auxiliary function: venv (pe, ve, f) = ve
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Rules for basic commands

e ` (SKIP, s) ) s

(pe, ve, f) ` (x ::= a, s) ) s(ve x := aval a (s � ve))

e ` (c1, s1) ) s2 e ` (c2, s2) ) s3
e ` (c1; c2, s1) ) s3

bval b (s � venv e) e ` (c1, s) ) t

e ` (IF b THEN c1 ELSE c2, s) ) t

¬ bval b (s � venv e) e ` (c2, s) ) t

e ` (IF b THEN c1 ELSE c2, s) ) t
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¬ bval b (s � venv e)

e ` (WHILE b DO c, s) ) s

bval b (s1 � venv e)
e ` (c, s1) ) s2 e ` (WHILE b DO c, s2) ) s3

e ` (WHILE b DO c, s1) ) s3
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Rules for new commands

(pe, ve(x := f), f + 1) ` (c, s) ) t

(pe, ve, f) ` ({VAR x;; c}, s) ) t

((p, cp, ve) # pe, ve, f) ` (c, s) ) t

(pe, ve, f) ` ({PROC p = cp;; c}, s) ) t

((p, c, ve) # pe, ve, f) ` (c, s) ) t

((p, c, ve) # pe, ve 0, f) ` (CALL p, s) ) t

p 0 6= p (pe, ve, f) ` (CALL p, s) ) t

((p 0, c, ve 0) # pe, ve, f) ` (CALL p, s) ) t
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