Technische Universitat Miinchen WS 2013/14
Institut fiir Informatik 5. 11. 2013
Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: 's = 's = bool. Intuitively, R
s t represents a single step from state s to state t.

The reflexive, transitive closure R* of R is the relation that contains a step R* s t, iff R
can step from s to ¢ in any number of steps (including zero steps).

Formalize the reflexive transitive closure as inductive predicate:

inductive star :: “('a = ‘a = bool) = 'a = 'a = bool”

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:

lemma star_prepend: “[r x y; star vy z] = star r x 27
lemma star_append: “[star rxzy; ryz]| = starrx z”

Now, formalize the star predicate again, this time the other way round:

inductive star’ :: “("a = ’‘a = bool) = 'a = 'a = bool”

Prove the equivalence of your two formalizations

lemma “star r xy = star’ rx y”

Hint: The induction method expects the assumption about the inductive predicate to be
first.

Exercise 4.2 Rule Inversion

Recall the evenness predicate ev from the lecture:

inductive ev :: “nat = bool” where
evl: “ev 07 |
evSS: “ev n = ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:

lemma “ev (Suc (Suc n)) = ev n”

proof —
assume “ev (Suc (Suc n))” then show “ev n
proof (cases)

”

qged
qed

Alternatively, you can write a more automated proof by using the inductive_cases
command to generate elimination rules. These rules can then be used with “auto elim:”.
(If given the [elim] attribute, auto will use them by default.)

inductive_cases evSS_elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive_cases.

lemma “— ev (Suc (Suc (Suc 0)))”

Homework 4.1 Elements of a List
Submission until Tuesday, November 12, 10:00am.
Give all your proofs in Isar, not apply style

Define a recursive function elems returning the set of elements of a list:

fun elems :: “'a list = 'a set”

To test your definition, prove:

lemma “elems [1,2,3,(4::nat)] = {1,2,3,4}”

Now prove for each element z in a list xs that we can split zs in a prefix not containing
z, z itself and a rest:

lemma “r € elems s = Jys zs. xs = ys Q & # zs Az ¢ elems ys”

Homework 4.2 Paths in Graphs
Submission until Tuesday, November 12, 10:00am.
Give all your proofs in Isar, not apply style

A graph is specified by a set of edges: E :: ('vx'v) set. A path in a graph from u to v
is a list of vertices [uy,...,u,] such that u=uy, (u;,u;y7)€F, and (u,,v)€E. Moreover,
the empty list is a path from any node to itself.

For example, in the graph: {(i,i + 1) | i € N}, we have that [3,4,5] is a path from & to
6, and [] is a path from 1 to 1.

Note that not including the last node of the path into the list simplifies the formalization.

Formalize an inductive predicate is_path

inductive is_path :: “(‘'vx'v) set = v = v list = v = bool”

Test your formalization for some examples:

lemma “is_path {(i,i+1) | iznat. True} 3 [3,4,5] 6”7
lemma “is_path {(i,i+1) | iz:nat. True} 1 [] 17

Prove the following two lemmas that allow you to glue together and split paths:

lemma path_appendl:
assumes “is_path E u pl v”
assumes “is_path E v p2 w”
shows “is_path F u (p1@p2) w”

Hint: For the next lemma, do an induction over pl, and, in the induction step, use
rule-inversion on is_path.

lemma path_appendFE:
assumes “is_path F u (p1@Qp2) w”
shows “3Jv. is_path E u pl v A is_path E v p2 w”

