Technische Universitat Miinchen WS 2013/14
Institut fiir Informatik 26. 11. 2013
Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

2. Extend the datatype com by a loop construct DO a TIMES ¢ which executes
the command c¢ exactly a times, where a is an arbitrary arithmetic expression of
integer type.

3. Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion functions nat, int, and real.

Homework 6.1 Compiler optimization

Submission until Tuesday, December 3, 10:00am.
A common programming idiom is IF' b THEN ¢, i.e., the else-branch consists of a single
SKIP command.
1. Look at how the program IF Less (V "z') (N 5) THEN "y" := N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of comp_correct to your modified compiler.



Homework 6.2 Absolute Adressing

Submission until Tuesday, December 3, 10:00am. This homework is worth 5 bonus
points.

The current instruction set uses relative addressing, i.e., the jump-instructions contain
an offset that is added to the program counter. An alternative is absolute addressing,
where jump-instructions contain the absolute address of the jump target.

Write a semantics that interprets the 3 types of jump instructions with absolute ad-
dresses. Write a function that converts a program from relative to absolute addressing.
Show that the semantics match wrt. your conversion.

definition cnv_to_abs :: “instr list = instr list”

abbreviation
exec_abs : “instr list = config = config = bool” (“(_/ Fq (- =%/ 2))” 50)

theorem “cnv_to_abs PV, ¢ =-x ¢’ +— PF ¢ =% ¢'”



