Technische Universitat Miinchen WS 2013/14
Institut fiir Informatik 3. 12. 2013
Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 7

Exercise 7.1 Definite Initialization Analysis

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into two
parts: a function AA :: com = name set (“assigned after”) which collects the names of
all variables assigned by a command and a binary predicate D :: name set = com = bool
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it Dj,.) and the two-step approach should
relate by the equivalence D V¢ «— Dy, Ve (V U AA ¢)

1. Download the theory ex07_tmpl.thy and study the already defined small-step
semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
of a command. Furthermore, define the predicate D which checks if a command
accesses only assigned variables, assuming the variables in the argument set are
already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
and conclude soundness of D. You may use (and then need to prove) the lemmas
D_incr and D_mono.

Homework 7.1 Erasing private parts

Submission until Tuesday, December 10, 2013, 10:00am.

Note: In this homework, you will do induction proofs over the big-step semantics. In
these proofs, the cases WhileFalse, IfTrue, and IfFalse are similar to the WhileTrue-case.
To save you from additional (repetitive) work, you may use sorry for the cases While-
False, IfTrue, and IfFalse.

However, if you cannot prove the WhileTrue case, try proving the other cases first, this
may get you some insight and partial score.

In this homework, you should define a function that erases confidential (“private”) parts
of a command:

fun erase :: “level = com = com”

Function erase [should replace all assignments to variables with security level > [by
SKIP. It should also erase certain IF's and WHILFEs, depending on the security level of
the boolean condition. Now show that ¢ and erase [¢ behave the same on the variables
up to level [:

theorem
“T (¢y8) = s; (erase leyt) =t Ok ¢; s=t(<1)]
= s'=t' (<)

This lemma looks remarkably like the noninterference lemma in Sec_Typing (although
< has been replaced by <). You may want to start with that proof and modify it where
needed. A lot of local modifications will be necessary, but the structure should remain
the same. You may also need one or two simple additional lemmas (for example ... =
aval a s1 = aval a s2), but nothing major.

In the theorem above we assumed that both (¢, s) and (erase [¢, t) terminate. How
about the following two properties:

~—

lemma “[(¢,s) = s} Ok ¢ s=t(<
= 3t’ (eraselct) = t'Ns' =t (< 1)”
lemma “[(eraselec,s) = s’y ObFc¢; s=t(<1)] = Tt (¢,t) = t"”

Give proofs or counterexamples.

