
Technische Universität München WS 2013/14
Institut für Informatik 3. 12. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Definite Initialization Analysis

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into two
parts: a function AA :: com ⇒ name set (“assigned after”) which collects the names of
all variables assigned by a command and a binary predicate D :: name set ⇒ com ⇒ bool
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it D lec) and the two-step approach should
relate by the equivalence D V c ←→ D lec V c (V ∪ AA c)

1. Download the theory ex07 tmpl.thy and study the already defined small-step
semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
of a command. Furthermore, define the predicate D which checks if a command
accesses only assigned variables, assuming the variables in the argument set are
already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
and conclude soundness of D. You may use (and then need to prove) the lemmas
D incr and D mono.

Homework 7.1 Erasing private parts

Submission until Tuesday, December 10, 2013, 10:00am.

Note: In this homework, you will do induction proofs over the big-step semantics. In
these proofs, the cases WhileFalse, IfTrue, and IfFalse are similar to the WhileTrue-case.

To save you from additional (repetitive) work, you may use sorry for the cases While-
False, IfTrue, and IfFalse.

However, if you cannot prove the WhileTrue case, try proving the other cases first, this
may get you some insight and partial score.

1

In this homework, you should define a function that erases confidential (“private”) parts
of a command:

fun erase :: “level ⇒ com ⇒ com”

Function erase l should replace all assignments to variables with security level ≥ l by
SKIP. It should also erase certain IF s and WHILE s, depending on the security level of
the boolean condition. Now show that c and erase l c behave the same on the variables
up to level l :

theorem
“ [[(c,s) ⇒ s ′; (erase l c,t) ⇒ t ′; 0 ` c; s = t (< l)]]
=⇒ s ′ = t ′ (< l)”

This lemma looks remarkably like the noninterference lemma in Sec Typing (although
≤ has been replaced by <). You may want to start with that proof and modify it where
needed. A lot of local modifications will be necessary, but the structure should remain
the same. You may also need one or two simple additional lemmas (for example . . . =⇒
aval a s1 = aval a s2), but nothing major.

In the theorem above we assumed that both (c, s) and (erase l c, t) terminate. How
about the following two properties:

lemma “ [[(c,s) ⇒ s ′; 0 ` c; s = t (< l)]]
=⇒ ∃ t ′. (erase l c,t) ⇒ t ′ ∧ s ′ = t ′ (< l)”

lemma “ [[(erase l c,s) ⇒ s ′; 0 ` c; s = t (< l)]] =⇒ ∃ t ′. (c,t) ⇒ t ′”

Give proofs or counterexamples.

2

