Technische Universitat Miinchen WS 2013/14
Institut fiir Informatik 10. 12. 2013
Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 8

Exercise 8.1 Independence analysis

In this exercise you first prove that the execution of a command only depends on its used
(i.e., read or assigned) variables. Then you use this to prove commutativity of sequential
composition

term “s =1t on X”
First show that arithmetic and boolean expressions only depend on the variables occuring
in them

lemma [simp]: “s1 = s2 on X = vars a« C X = aval a s = aval a s2”

lemma [simp]: “s1 = s2 on X = vars b C X = bval b sI = bval b s2”

Next, show that executing a command does not invent new variables

lemma vars_subsetD][dest]: “(c, s) — (¢’; s') = vars ¢’ C vars ¢”

And that the effect of a command is confined to its variables

lemma small_step_confinement: “(c, s) — (¢, s') = s = s’ on UNIV — vars ¢”
lemma small_steps_confinement: “(c, s) —* (¢, s') = s = s’ on UNIV — vars ¢”

Hint: These proofs should go through (mostly) automatically by induction.

Now, we are ready to show that commands only depend on the variables they use:

lemma small_step_indep:

“le,8) = (¢, s)=s=tonX = varsc C X = Ft'. (¢, t) = (¢, t)Ns' =t on X7
lemma small_steps_indep: “[(c, s) —* (c¢', 8'); s = t on X; vars ¢ C X]

= 3t (¢, t) =* (¢, t) N s'=t" on X7

Two lemmas that may prove useful for the next proof.

lemma small_steps_SeqE: “(cl1 ;; ¢2, s) —* (SKIP, s’
= 3Jt. (cl1, s) = (SKIP, t) A (2, t) == (SKIP, s')”
by (induction “cl ;; ¢2” s SKIP s’ arbitrary: cl ¢2 rule: star_induct)
(blast intro: star.step)

lemma small_steps_Seql: “[(cl, s) == (SKIP, s'); (¢2, s’) == (SKIP, t)]
= (cl ;; ¢2, s) —x* (SKIP, t)”
by (induction c1 s SKIP s’ rule: star_induct)
(auto intro: star.step)

As we operate on the small-step semantics we also need our own version of command
equivalence. Two commands are equivalent iff a terminating run of one command implies
a terminating run of the other command. And, of course the terminal state needs to be
equal when started in the same state.

definition equiv_com :: “com = com = bool” (infix “~,;” 50) where
“cl ~g 2 +— (Vs t. (c1,s) »* (SKIP, t) +— (c2, s) —x* (SKIP, t))”

Show that we defined an equivalence relation

lemma ec_refl[simp]: “equiv_com ¢ ¢”
lemma ec_sym: “equiv_com c1 c2 <— equiv_com c2 cl1 ”
lemma ec_trans[trans]: “equiv_com cl c¢2 = equiv_com c2 ¢ = equiv_com cl ¢3”

Note that our small-step equivalence matches the big-step equivalence

lemma “cl~gc2 «— cl~c2” unfolding equiv_com_def by (metis big_iff_small)

Finally, show that commands that share no common variables can be re-ordered

theorem Seq_equiv_Seq_reorder:
assumes vars: “vars ¢ N vars c2 = {}”
shows “(c1 ;; ¢2) ~s (2 55 ¢l1)”

proof —

{

As the statement is symmetric, we can take a shortcut by only proving one direction:

fix c1 c2st
assume Seq: “(cl ;; ¢2, s) = (SKIP, t)” and vars: “vars ¢ N vars ¢2 = {}”
have “(c¢2 ;; cl1, s) =+ (SKIP, t)”
} with vars show ?thesis unfolding equiv_com_def by (metis Int_commute)
qed

Homework 8.1 Idempotence of Dead Varibale Elimination
Submission until Tuesday, December 17, 2013, 10:00am.

Dead variable elimination (bury) is not idempotent: multiple passes may reduce a com-
mand further and further. Give an example where bury (bury ¢ X) X # bury ¢ X. Hint:
a sequence of two assignments.

Now define the textually identical function bury in the context of true liveness analysis
(theory Live_True).

fun bury :: “com = wvname set = com” where

“bury SKIP X = SKIP” |

“bury (z 2= a) X = (if v € X then z ::= a else SKIP)” |

“bury (c13; c2) X = (bury c1 (L c2 X)3; bury ca X)7 |

“bury (IF b THEN ¢y ELSE ¢9) X = IF b THEN bury ¢; X ELSE bury co X” |
“bury (WHILE b DO ¢) X = WHILE b DO bury ¢ (L (WHILE b DO ¢) X)”

The aim of this homework is to prove that this version of bury is idempotent. This will
involve reasoning about Ifp. In particular we will need that [fp is the least pre-fixpoint.
This is expressed by two lemmas from the library:

Ifp_unfold: mono ?f = Ifp ?f = 2f (lfp ?f)

Ifp_lowerbound: ?f 7A < ?A = lIfp 7f < 74
Prove the following lemma for showing that two fixpoints are the same, where mono_def:
mono f = Vo y. o <y — ?2%fz < 7 y).

lemma [fp_eq: “[mono f; mono g; lfp f C U; Ifp g C U;
. XCU=fX=gX]|=lpf=1lpyg”

It says that if we have an upper bound U for the Ifp of both f and ¢, and f and g behave
the same below U, then they have the same [fp.

The following two tweaks improve proof automation:

lemmas [simp] = L.simps(5)
lemmas L_mono2 = L_mono[unfolded mono_def]

To show that bury is idempotent we need a lemma:

lemma L_bury[simp]: “X CYV = L (burycY) X =L ¢ X”
proof (induction c arbitrary: X Y)

The proof is straightforward except for the case WHILE b DO c. The definition of L in
this case means that we have to show an equality of two [fps. Lemma [mono ?f; mono
2g; Up of C 2U; Ufp 29 C U, NX. X C 29U = f X = 29 X]| = Ufp ?f = lfp %9
comes to the rescue. We recommend the upper bound Ifp (AZ. vars b U Y U L ¢ Z).
One of the two upper bound assumptions of lemma [mono ?f; mono ?g; Iifp ?f C ?U,
ifp 29 C 2U; NX. X C 22U = 9% X = %9 X] = Ifp ?f = lfp ?g can be proved by
showing that U is a pre-fixpoint of f or g (see lemma Ifp_lowerbound).

Now we can prove idempotence of bury, again by induction on ¢, but this time even the
While case should be easy.

lemma bury_bury: “X C Y = bury (bury ¢ V) X = bury ¢ X”

Idempotence is a corollary:

corollary “bury (bury ¢ X) X = bury ¢ X”

Homework 8.2 Independence, in Parallel Programs

Submission until Tuesday, December 17, 2013, 10:00am. 5 bonus points.

Extend the while language with a parallel operator ||, such that c1|[c2 executes com-
mands ¢! and ¢2 in parallel, and define a small step semantics.

Show that, for your parallel language, you have vars ¢ N vars ¢2 = {} = (cl || ¢2)
~s (cl 35 ¢2), i.e., sequential composition can be transformed to parallel execution if it
works on different variables.

To solve this exercise, use the template from the webpage, which provides a sample
solution from exercise 8.1 adapted to the parallel commands.

end

