Technische Universitat Miinchen WS 2013/14
Institut fiir Informatik 7. 1. 2014
Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages
Exercise Sheet 10

Exercise 10.1 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form - { P} z::=a {...},
where ... is some suitable postcondition. Hint: To prove this rule, use the completeness
property, and prove the rule semantically.

Redo the proofs for MAX and MUL from the previous exercise sheet, this time using
your forward assignment rule.

definition MAX :: com where

“MAX =

IF (Less (V "a’) (V "b")) THEN
//C/l:::V //b//

ELSE
//C//:::V //a//77

definition MUL :: com where

“MUL =
"2"::=N 0
"e'=N 0”

WHILE (Less (V "¢y (V "'y"")) DO (
//z//:::Plus (V //Z//) ('V ,/:C//);;
"e':=Plus (V "'¢") (N 1))”

lemma “ {Xs. 0 < s "y"} MUL {Xs. s "z"" = s "z"" % s "y"}”

Exercise 10.2 Using the VCG

For each of the three programs given here, you must prove partial correctness. You should
first write an annotated program, and then use the verification condition generator from

VCG.thy.



Some abbreviations, freeing us from having to write double quotes for concrete variable
names:

abbreviation “aa = "a’’” abbreviation “bb = b7 abbreviation “c = ""¢'"”
abbreviation “dd = ''d""” abbreviation “ce = ""d’’” abbreviation “ff = "f'"”
abbreviation “pp = "p’’” abbreviation “gqq = "'q’’” abbreviation “rr = "'r’"”

Some useful simplification rules:

declare algebra_simps[simp] declare power2_eq_square[simp]
Rotated rule for sequential composition:

A convenient loop construct:

abbreviation For :: “oname = aexp = aexp = com = com”
(“(FOR ./ FROM _/ TO _/ DO .)” [0, 0, 0, 61] 61) where
“FOR v FROM a1 TO a2 DO ¢ =
v u= al ;; WHILE (Less (V v) a2) DO (c;; v := Plus (Vv) (N 1))”

abbreviation Afor :: “assn = vname = aexp = aexp = acom = acom”
(“({.}/ FOR _/ FROM _/ TO _/ DO .)” [0, 0, 0, 0, 61] 61) where
“{b} FOR v FROM al TO a2 DO ¢ =
v = al ;; {b} WHILE (Less (Vv) a2) DO (c ;; v := Plus (Vv) (N 1))”

Multiplication. Consider the following program MULT for performing multiplication
and the following assertions P MULT and Q_MULT:

definition MULT :: com where “MULT =
cc = NO ;;
FOR dd FROM (N 0) TO (V aa) DO
cc = Plus (V cc) (V bb)”

definition P.MULT :: “int = int = assn” where
“PMULTij=MXs.saa=1iNsbb=j5N0<1i

definition Q_MULT :: “int = int = assn” where
“QMULT ij=Xs.scc=1i*xjANsaa=1ANsbb=j"

Define an annotated program AMULT i j, so that when the annotations are stripped
away, it yields MULT. (The parameters ¢ and j will appear only in the loop annotations.)

Hint: The program AMULT i j will be essentially MULT with an invariant annotation
iMULT i j at the FOR loop, which you have to define:

definition iMULT :: “int = int = assn” where
definition AMULT :: “int = int = acom” where
“AMULT 1j =
(cc :=N0) 3
{iMULT i j} FOR dd FROM (N 0) TO (V aa) DO



cc := Plus (V cc) (V bb)”
lemmas MULT defs = MULT_def P_-MULT_def Q_MULT_def iMULT_def AMULT_def

lemma strip AMULT: “strip (AMULT i j) = MULT”

Once you have the correct loop annotations, then the partial correctness proof can be
done in two steps, with the help of lemma vc_sound’.

lemma MULT_correct: “+ {P_-MULT ij} MULT {Q-MULT i j}”

Division. Define an annotated version of this division program, which yields the quo-
tient and remainder of aa/bb in variables "q" and "r"’, respectively.

definition DIV :: com where “DIV =
qq == N0 3;
rr = NGO 3
FOR cc FROM (N 0) TO (V aa) DO (
rr = Plus (Vrr) (N 1) 3;
IF Less (V rr) (V bb) THEN
Com.SKIP
ELSE (
rr = NO 3
| qq == Plus (V qq) (N 1))

definition P_DIV :: “int = int = assn” where
“PDIVij=Xs.saa=1ANsbb=7AN0<iN0<j

definition Q_DIV :: “int = int = assn” where

“QDIV ij =
Asci=sqq*]j+smANOL<srrAsrmr<jAsaa=1iAsbb=j"

definition DIV :: “nt = int = assn” where

definition ADIV :: “int = int = acom” where “ADIV i j
qq == N0 3;
rr = NO 3
{iDIV i j} FOR cc FROM (N 0) TO (V aa) DO (
rr = Plus (Vrr) (N 1) 3;
IF Less (V rr) (V bb) THEN
SKIP
ELSE (
= NO 3
qq == Plus (V qq) (N 1)

)
)}7

lemma strip_ ADIV: “strip (ADIV i j) = DIV”
lemma DIV_correct: “F {P_-DIV ij} DIV {Q.DIV ij}”



Square roots.

Define an annotated version of this square root program, which yields
the square root of input aa (rounded down to the next integer) in output bb.

definition SQR :: com where “SQR =
bb == N0 3
cc = N1 3
WHILE (Not (Less (V aa) (V cc))) DO (
bb ::= Plus (V bb) (N 1);;

cc = Plus (V cc) (Plus (V bb) (Plus (V bb) (N 1)))
)77

definition P_SQR :: “int = assn” where
“PSQR i =MXs. saa =1 N0 <1’
definition Q_SQR :: “int = assn” where

“QSQRi=AXs.saa =1 AN (sbb)"2 <iANi<(sbb+1)"2"

Homework 10 Be Original!

Submission until Tuesday, 14 January 2014, 10:00am.
Use the second week to polish your formalization a bit.



