
Technische Universität München WS 2013/14
Institut für Informatik 4. 2. 2014

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 14

1 Nondeterministic Choice

To the standard com datatype, add a command for nondeterministic choice:

datatype com = . . . | Or com com

Augment the inductive definition of big-step semantics by adding two new rules:

(c1, s) ⇒ s ′

(Or c1 c2, s) ⇒ s ′ or-left
(c2, s) ⇒ s ′

(Or c1 c2, s) ⇒ s ′ or-right

Also extend the inductive definition of the Hoare calculus with a new rule:

` {P} c1 {Q} ` {P} c2 {Q}
` {P} Or c1 c2 {Q}

or

Show that the Hoare calculus remains sound, i.e., that we still have

` {P} c {Q} =⇒ |= {P} c {Q}

Note: You need not reproduce parts of the proof that remain unchanged w.r.t. the proof
for the original while-language without Or.

2 Recursive Functions and Structural Induction

Consider this simple datatype of boolean formulae:

datatype form = Var vname | Impl form form

Write a recursive definition of a function subst that does simultaneous substitution. The
application subst σ t simultaneously replaces every variable in t with a new sub-formula:
Each occurrence of Var x is replaced with σ(x ).

subst :: (vname ⇒ form) ⇒ form ⇒ form

If we do simultaneous substitution with (λx . Var x ), we should get the identity function
on formulae:

subst (λx . Var x ) t = t

Prove this fact by structural induction on t.

1



3 Simplified Sign-Analysis

Design a simplified sign analysis, that only distinguishes between positive values and
any values, i.e., the lattice has the elements L = {Pos, Any}.
Define the ordering (≤), supremum t, and indicate the >-element. Prove that your
definitions yield a join semilattice (class semilattice sup top from the lecture), i.e., that
≤ is a preorder (reflexive, transitive) with greatest element >, and that t is the least
upper bound.

Define the concretization function γs :: L ⇒ int set, and the abstract operations nums

:: int ⇒ L and pluss :: L ⇒ L ⇒ L. Show that they are sound abstractions, i.e.,

n ∈ γs (nums n)

n1 ∈ γs a1 ∧ n2 ∈ γs a2 =⇒ n1+n2 ∈ γs (pluss a1 a2)

Iterate the step ′ function for the following program until a fixed point is reached, and
tabulate the annotations after each iteration:

x := 1 {A1};

y := 2 {A2};

IF z<1 THEN (

{A3} x := x + y {A4}

) ELSE (

{A5} x := x + (-1) {A6}

) {A7}

0 1 2 3 4 5 6

A1 None

A2 None

A3 None

A4 None

A5 None

A6 None

A7 None

Notes:

• The column numbered n shall contain the annotation after applying step ′ >
n times. Hence, column 0 that we filled for you contains the initial annotation.

• Remember that the annotations produced by the step ′-function have type (vname
⇒ L) option.

Use some shortcut notations to represent annotations, e.g.,
〈ax,ay,az〉 for Some 〈 x := ax, y := ay, z := az 〉,
where ax,ay,az ∈ L.

• Use the simplest version of step ′, i.e., the one without analysis of boolean expres-
sions.

2



4 Post-fixed points

Recall that a complete lattice is a type ′a with a partial order ≤ such that every set X
:: ′a set has a greatest lower bound, denoted

d
X. This means that ∀ x ∈ X .

d
X ≤ x

and ∀ y . ((∀ x ∈ X . y ≤ x ) −→ y ≤
d
X ).

Prove that, for a complete lattice and a monotone function f :: ′a ⇒ ′a on it, the set of
post-fixed points of f is closed under

d
:

∀ X :: ′a set . ((∀ x ∈ X . f x ≤ x ) −→ f (
l

X ) ≤
l

X )

3


	Nondeterministic Choice
	Recursive Functions and Structural Induction
	Simplified Sign-Analysis
	Post-fixed points

