1 Pretty syntax for lattice operations

theory Lattice_Syntax
imports Complete_Lattices
begin

notation
bot (“L”) and
top (“T”) and
inf (infix] “N” 70) and
sup (infixl “U” 65) and
Inf (“[']-7 [900] 900) and
Sup (“L]-7 [900] 900)

syntax (zsymbols)

“ INF1” i “pttrns = b = 'b” (“(3[-./)7 [0, 10] 10)
“ INF” = “pttrn = a set = 'b = 'b” (“([-€-./)7 [0, 0, 10] 10)
«7 UP.Z e 4 tt / ” I_l /)77 [0 10})
Tefg‘(ﬂﬂ‘fs‘:he Um‘{erséﬁat @‘QC’?@ ’b” “(3Ll-e~/)7 [0, 0, 10] 10) WS 2013/14
Institut fpr Informatik 4. 2. 2014

end’rof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Holzl

Semantics of Programming Languages
Exercise Sheet 14

2 Nondeterministic Choice

To the standard com datatype, add a command for nondeterministic choice:
datatype com = ... | Or com com

Augment the inductive definition of big-step semantics by adding two new rules:

(c1, 8) = s’ (co, s) = s’
; OR-LEFT /OR—RIGHT
(Or ey ca, 8) = s (Or ey ca, 8) = s

Also extend the inductive definition of the Hoare calculus with a new rule:

P a Q) F{Ph e
F{P} Orc c2 {Q}

Show that the Hoare calculus remains sound, i.e., that we still have
F{P} c{Q} = E{P} c{Q}

Note: You need not reproduce parts of the proof that remain unchanged w.r.t. the proof
for the original while-language without Or.

2.1 Solution

How an Isabelle proof might look (we explicitly mention the necessary unfoldings, in-
ductions and case distinctions):

lemma assumes “+ {P} ¢ {Q}” shows “E= {P} ¢ {Q}”
using assms
proof (induction rule: hoare.induct)
fix P Q c; co assume IH: “= {P} c1 {Q}” “E{P} c2 {Q}”
show “= {P} Orc; c2 {Q}”
unfolding hoare_valid_def
proof (intro alll impl)
fix s t assume “(Or ¢y ca,) = t7 “P s”
then show “Q t”
proof (cases rule: big_step.cases)
case Or_Left with <P s) IH show ?thesis
unfolding hoare_valid_def by auto
next
case Or_Right with (P s) IH show ?thesis
unfolding hoare_valid_def by auto
qed
qed
oops — We do not show the remaining cases.

A text proof might look like:
Show - {P} ¢ {Q} = k= {P} ¢ {Q}
Proof. Rule induction on = {P} ¢ {Q} (only OR-case, the rest doesn’t change):
Case OR: Induction hypothesis: = {P} ¢; {@Q} and = {P} c2 {Q}.
Show = {P} Or c1 c2 {Q} by E-definition:
Fix two states s and ¢, assume P s and (Or ¢1 c2, s) = t.
Show @ t by case distinction on (Or ¢y ca, s) = t:
Subcase OR-LEFT:
Assume (c1, s) = t: Show Q t, by IH = {P} ¢1 {Q}, P s, and =-def.
Subcase OR-RIGHT:
Analog to OR-LEFT, replace c¢1 with cs.

3 Recursive Functions and Structural Induction

Consider this simple datatype of boolean formulae:

datatype form = Var vname | Impl form form

Write a recursive definition of a function subst that does simultaneous substitution. The
application subst o t simultaneously replaces every variable in ¢ with a new sub-formula:
Each occurrence of Var z is replaced with o(z).

subst :: (vname = form) = form = form

If we do simultaneous substitution with (Az. Var z), we should get the identity function
on formulae:

subst (Az. Varz) t =t

Prove this fact by structural induction on t.

primrec subst :: “(vname = form) = form = form”
where

“subst o (Var) = o z” |

“subst o (Impl t1 to) = Impl (subst o t1) (subst o ta)”

lemma p1: “subst (A\x. Varz) ¢t = t”
proof (induct t)

case (Var y)

fix y :: vname
show “subst (A\z. Var z) (Var y) = Var y” by simp
next

case (Impl t1 t2)

fix ty to :: form
assume [HI1: “subst (A\x. Var z) t; = t1”
assume [H2: “subst (A\x. Var z) to = t2”
show “subst (Az. Var z) (Impl t1 t2) = Impl ty t2”
by (simp add: IH1 IH2)
qed

4 Simplified Sign-Analysis

Design a simplified sign analysis, that only distinguishes between positive values and
any values, i.e., the lattice has the elements L = {Pos, Any}.

Define the ordering (<), supremum U, and indicate the T-element. Prove that your
definitions yield a join semilattice (class semilattice_sup_top from the lecture), i.e., that
< is a preorder (reflexive, transitive) with greatest element T, and that U is the least
upper bound.

Define the concretization function v :: L = int set, and the abstract operations numg
:int = L and pluss :: L = L = L. Show that they are sound abstractions, i.e.,

n € vs (numg n)
ny € vs a1 A ng € y5 ag => ni+ns € v, (pluss ar ag)

Iterate the step’ function for the following program until a fixed point is reached, and
tabulate the annotations after each iteration:

x := 1 {A1};
y := 2 {A2};
IF z<1 THEN (
{A3} x := x + y {A4}

) ELSE (
{A5} x := x + (-1) {A6}
) {A7}
|0 |1 | 2 |3 | 4 5
Al None <P, A, A>
A2 None <P, P, A>
A3 None <P, P, A>
A4 None <P, P, A>
A5 None <P, P, A>
A6 None <A, P, A>
AT None <A, P, A>
Notes:

e The column numbered n shall contain the annotation after applying step’ T
n times. Hence, column 0 that we filled for you contains the initial annotation.

e Remember that the annotations produced by the step’-function have type (vname
= L) option.
Use some shortcut notations to represent annotations, e.g.,
(ag,ay,a,) for Some (= ag, y := ay, 2 = a;),
where a;,ay,a, € L.

e Use the simplest version of step’, i.e., the one without analysis of boolean expres-

sions.
4.1 Solution
4.1.1 Order <

Definitions: ¢ < y «— x = Pos V = = y,
z Uy = (ifz = Pos N y = Pos then Pos else Any), T = Any
< is preorder with top and lub:

refl z < z by def of <

trans £ <y — y <z — x < z by def of <

greatest z < T by def of < and T, case distinction on z

lub (V) z<zUy 2y<zUyand3)z<z—y<z-—zUy<z (1) bycase
dist. on z and defs, (2) by case dist. on z and defs, (3) by case dist. on z x y X
z, and defs

4.1.2 Abstract Interpretation

Definitions: vs Pos = {z. 0 < z}, vs Any = UNIV, nums x = (if 0 < z then Pos else
Any),
pluss ©y = (if x = Pos N\ y = Pos then Pos else Any)

Soundness:
e n € 75 (nums n): case distinction on 0 < n, defs
® Ny €5 a1 Ang € ag = ni+ng € vs (pluss ay az):
case distinction on a3 = Pos A as = Pos and arithmetic with 0 < ny — 0 <
ng — 0 < ni1 + no.

5 Post-fixed points

Recall that a complete lattice is a type ‘a with a partial order < such that every set X
it 'a set has a greatest lower bound, denoted [| X. This means that V z € X. [1X < z
andV y. (VzeX. y<z)— y<[]X).

Prove that, for a complete lattice and a monotone function f :: ‘a = ’a on it, the set of
post-fixed points of f is closed under []:

vV X = 'aset.((VxGX.fx§$)—>f(|_|X)§|_|X)

Solution

lemma
fixes X :: “('a::complete_lattice) set”
assumes mono: “mono f”
and pfp: “VX.VzeX. fz <z’
shows 4 ([1X) <[]1X”
proof(rule (Az. z € X = f ([1X) <z)=f ([1X) <[]1X)
fix assume z: ‘¢ € X”
then have “[X < z” by (rule @ € X = []X < m)
hence “f ([1X) < fz” using mono unfolding mono_def by auto

also have “... < z” using pfp = by auto
finally show “f ([1X) < 2”7 . — by transitivity
qed

Above, spelling out monotonicity instead of writing mono is also acceptable.

	Pretty syntax for lattice operations
	Nondeterministic Choice
	Solution

	Recursive Functions and Structural Induction
	Simplified Sign-Analysis
	Solution
	Order 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Abstract Interpretation

	Post-fixed points

