Technische Universitat Miinchen WS 2015/16
Institut fiir Informatik 20. 10. 2015
Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages

Exercise Sheet 2

This exercise sheet depends on definitions from the file A Ezp.thy, which may be imported
as follows:

theory FEz02
imports "~ /src/HOL/IMP/AExp”
begin

Exercise 2.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname = aexp = aerp = aexp that performs a syntactic
substitution, i.e., subst z a’ a shall be the expression a where every occurrence of variable
x has been replaced by expression a’.

Instead of syntactically replacing a variable x by an expression a’, we can also change
the state s by replacing the value of z by the value of a’ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst_lemma: “aval (subst z a’ a) s = aval a (s(z:=aval a’ s))”
Note: The expression s(z:=v) updates a function at point z. It is defined as:
fla:=b) = (A\z. if £ = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval al s = aval a2 s = aval (subst z al a) s = aval (subst z a2 a) s”

Exercise 2.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick () to them, e.g., V' z

The semantics of extended arithmetic expressions has the type aval’ :: aexp’ = state =
(valx state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function awval’.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval’ for this intermediate language should have type aexp’ = state = val x state. After
completing the entire exercise with this version, then modify your definitions to add
division and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<>=Mz. 0

value “aval’ (D’ (V' "z") (V' "z")) <>7

value “aval’ (D’ (PI' "z") (V' "z")) <"z':=1>"

value “aval’ (Plus’ (PI' "z (V' "z")) <>7”

value “aval’ (Plus’ (Plus’ (PI' "'z") (PI' ""z")) (PI' "z"")) <>7

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval’_inc: “aval’ a s = Some (v,8") = sz < s’ z”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split: split_if_asm option.splits).

Exercise 2.3 Variables of Expression

Define a function that returns the set of variables occurring in an arithmetic expression.

fun vars :: “aexp = vname set” where

Show that arithmetic expressions do not depend on variables that they don’t contain.

lemma ndep: “c¢vars e = aval e (s(x:=v)) = aval e s”
by (induction e) auto

Homework 2.1 Conditionals

Submission until Tuesday, 27. Oct. 2015, 10:00am.

We define a representation of Boolean expressions that only use conditionals as connec-
tive.

datatype cexp = Cond cexp cexp cexp | Be' bool | Less’ aexp aexp
The semantics of Cond b t e is if b holds, then evaluate ¢, else evaluate e. Define the
semantics:

fun cval :: “cexp = state = bool”

Define conversions from bexp to cexp and back. Show that your conversions preserve the
semantics:

fun b2c :: “bexp = cexp”
lemma “cval (b2¢ b) o = bval b o”
fun c2b :: “cexp = bexp”

lemma “bval (¢2b ¢) o0 = cval ¢ 0”

Homework 2.2 Heaps

Submission until Tuesday, 27. Oct. 2015, 10:00am.

A (min) heap is a binary tree with node labels, such that every node is less than or equal
to its successors.

We model heaps by the following datatype:

datatype heap = Leaf | Node nat heap heap

Define a function to check the heap property. Hint: The following function may save you
some case distinctions:

fun le :: “nat = heap = bool” where
“le n Leaf +— True”
| “le n (Node m _) <— n<m”

fun heap_invar :: “heap = bool” where
Define a function to return the minimal value of a non-empty heap. Set the case for an
empty heap to undefined.

fun get-min :: “heap = nat” where
“get_min Leaf = undefined”

The following function maps a heap to the set of its elements.

fun heap_set where
“heap_set Leaf = {}”
| “heap_set (Node a h1 h2) = insert a (heap_set h1 U heap_set h2)”

Note that insert x s inserts element = to set s. To get the U symbol, type \union, or
use the symbols panel!

Show that get_min actually returns an element from the heap

lemma get_min_correctl: “h#Leaf =—> get_min h €heap_set h”

Show that get_min returns an element smaller or equal to the elements of the heap

lemma get_min_correct?2: “h#Leaf =—> heap_invar h => b&heap_set h =—> get_min h<b”
Hint: You may need an auxiliary lemma about le.

As a bonus exercise for 5 bonus points, implement a function that merges two heaps,
and show that it preserves the heap-property and that the set of elements on the new
heap is the union of elements in the old heaps. You need not consider balancedness of
heaps!

Note: Bonus points count on your side, but not on the total number of reachable points,
when we compute the ratio of points that you scored in the homework, which will be 40

It may happen that the function package cannot prove termination of your function by
default. In this case, use the following template, which makes use of the size-change
termination prover, which should be able to prove termination.

function merge :: “heap = heap = heap”
where
— Function equations as usual
by pat_completeness auto
termination by size_change

lemma merge_correctl: “[heap_invar h1; heap_invar h2] = heap_invar (merge h1 h2)”
lemma merge_correct2: “heap_set (merge h1 h2) = heap_set h1 U heap_set h2”

