
Technische Universität München WS 2015/16
Institut für Informatik 8. 12. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Note that available assignments can be used for program optimization, by avoiding
recomputation of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A” |
“AA (x ::= a) A = (if x ∈ vars a then {} else {(x , a)})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}” |

“AA (c1;; c2) A = (AA c2 ◦ AA c1) A” |
“AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A” |
“AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

fun gen :: “com ⇒ (vname × aexp) set”
and “kill” :: “com ⇒ (vname × aexp) set”

lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

1

Now show that the analysis is sound:

theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

2

Homework 9.1 Idempotence of Dead Varibale Elimination

Submission until Tuesday, December 15, 2013, 10:00am.

Dead variable elimination (bury) is not idempotent: multiple passes may reduce a com-
mand further and further. Give an example where bury (bury c X) X 6= bury c X. Hint:
a sequence of two assignments.

Now define the textually identical function bury in the context of true liveness analysis
(theory Live True).

fun bury :: “com ⇒ vname set ⇒ com” where
“bury SKIP X = SKIP” |
“bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)” |
“bury (c1;; c2) X = (bury c1 (L c2 X);; bury c2 X)” |
“bury (IF b THEN c1 ELSE c2) X = IF b THEN bury c1 X ELSE bury c2 X” |
“bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)”

The aim of this homework is to prove that this version of bury is idempotent. This will
involve reasoning about lfp. In particular we will need that lfp is the least pre-fixpoint.
This is expressed by two lemmas from the library:

lfp unfold : mono ?f =⇒ lfp ?f = ?f (lfp ?f)
lfp lowerbound : ?f ?A ≤ ?A =⇒ lfp ?f ≤ ?A

Prove the following lemma for showing that two fixpoints are the same, where mono def :
mono ?f = (∀ x y . x ≤ y −→ ?f x ≤ ?f y).

lemma lfp eq : “ [[mono f ; mono g ; lfp f ⊆ U ; lfp g ⊆ U ;
!!X . X ⊆ U =⇒ f X = g X]] =⇒ lfp f = lfp g”

It says that if we have an upper bound U for the lfp of both f and g, and f and g behave
the same below U, then they have the same lfp.

The following two tweaks improve proof automation:

lemmas [simp] = L.simps(5)
lemmas L mono2 = L mono[unfolded mono def]

To show that bury is idempotent we need a lemma:

lemma L bury [simp]: “X ⊆ Y =⇒ L (bury c Y) X = L c X”
proof(induction c arbitrary : X Y)

The proof is straightforward except for the case WHILE b DO c. The definition of L in
this case means that we have to show an equality of two lfps. Lemma [[mono ?f ; mono
?g ; lfp ?f ⊆ ?U ; lfp ?g ⊆ ?U ;

∧
X . X ⊆ ?U =⇒ ?f X = ?g X]] =⇒ lfp ?f = lfp ?g

comes to the rescue. We recommend the upper bound lfp (λZ . vars b ∪ Y ∪ L c Z).
One of the two upper bound assumptions of lemma [[mono ?f ; mono ?g ; lfp ?f ⊆ ?U ;
lfp ?g ⊆ ?U ;

∧
X . X ⊆ ?U =⇒ ?f X = ?g X]] =⇒ lfp ?f = lfp ?g can be proved by

showing that U is a pre-fixpoint of f or g (see lemma lfp lowerbound).

Now we can prove idempotence of bury, again by induction on c, but this time even the
While case should be easy.

3

lemma bury bury : “X ⊆ Y =⇒ bury (bury c Y) X = bury c X”

Idempotence is a corollary:

corollary “bury (bury c X) X = bury c X”

Homework 9.2 Dead Variables

Submission until Tuesday, Dec 15, 10:00am. 5 bonus points, quite easy!

A variable is dead at a program point, if on all executions from that program point, it
is not read before it is written.

Write a function that propagates sets of dead variables backwards through a command:

fun D :: “com ⇒ vname set ⇒ vname set”

Show the following correspondence between dead and live variable analysis:

lemma “D c X = − L c (−X)”

Note, − X ≡ UNIV − X is set complement.

4

