
1

Final Exam
Semantics

11. 2. 2014

First name:

Last name:

Student-Id (Matrikelnummer):

Signature:

1. You may only use a pen/pencil, eraser, and two A4 sheets of notes to solve the exam.
Switch off your mobile phones!

2. Please write on the sheets of this exam. At the end of the exam, there are two extra
sheets. If you need more sheets, ask the supervisors during the exam.

3. You have 120 minutes to solve the exam.

4. Please put your student ID and ID-card or driver’s license on the table until we have
checked it.

5. Please do not leave the room in the last 20 minutes of the exam — you may disturb
other students who need this time.

6. All questions of this exam are worth the same number of points.

2

Proof Guidelines: We expect detailed, rigorous, mathematical proofs — but we do not
ask you to write Isabelle proof scripts! You are welcome to use standard mathematical
notation; you do not need to follow Isabelle syntax. Proof steps should be explained in
ordinary language like a typical mathematical proof.

Major proof steps, especially inductions, need to be stated explicitly. For each case of
a proof by induction, you must list the variables fixed, the inductive hypotheses
assumed (if any), and the goal to be proved.

Minor proof steps (corresponding to by simp, by blast etc) need not be justified if you
think they are obvious, but you should say which facts they follow from. You should be
explicit whenever you use a function definition or an introduction rule for an inductive
relation — especially for functions and relations that are specific to an exam question.
(You need not reference individual lemmas for standard concepts like integer arithmetic,
however, and in any case we do not ask you to recall lemma names from any Isabelle
theories.)

3

1 Command Equivalence

We call two commands c and c ′ equivalent wrt. the big-step semantics when c started in
s terminates in s ′ iff c ′ started in the same s also terminates in the same s ′. Formally:

c1 ∼ c2 ≡ (∀ s t . (c1, s) ⇒ t ←→ (c2, s) ⇒ t)

1. Define a function is SKIP :: com ⇒ bool which holds on commands equivalent to
SKIP. The function is SKIP should be as precise as possible, but it should not
analyse arithmetic or boolean expressions.

Prove: is SKIP c =⇒ c ∼ SKIP

2. The following command equivalence is wrong. Give a counterexample in the form
of concrete instances for b1, b2, c1, c2, and a state s.

WHILE b1 DO IF b2 THEN c1 ELSE c2
∼ IF b2 THEN (WHILE b1 DO c1) ELSE (WHILE b1 DO c2)

(∗)

3. Define a condition P on b1, b2, c1, and c2 such that the previous statement (∗)
holds, i.e. P b1 b2 c1 c2 =⇒ (∗)
Your condition should be as precise as possible, but only using:

• lvars :: com ⇒ vname set (all left variables, i.e. written variables),

• rvars :: com ⇒ vname set (all right variables, i.e. all read variables),

• vars :: bexp ⇒ vname set (all variables in a condition), and

• boolean connectives and set operations

No proof required.

1.1 Solution

Question 1 Definition of is SKIP :

is SKIP SKIP = True
is SKIP (x ::= a) = False
is SKIP (c1;; c2) = (is SKIP c1 ∧ is SKIP c2)
is SKIP (IF b THEN c1 ELSE c2) = (is SKIP c1 ∧ is SKIP c2)
is SKIP (WHILE b DO c) = False

Question 2 Note that we have (c ∼ SKIP) = (∀ s t . (c, s) ⇒ t = (s = t)).

Prove is SKIP c =⇒ c ∼ SKIP by structural induction on c.
For assignment and the while-statement is SKIP is False.
For SKIP we apply reflexivity of op ∼.

4

In the Seq-case we know that is SKIP (c1;; c2) and the IHs are is SKIP ci −→ ci ∼
SKIP for i = 1, 2. We have to prove c1;; c2 ∼ SKIP, i.e., (c1;; c2, s) ⇒ t iff s = t. By
definition of is SKIP we get ∀ i . is SKIP ci, and with IH we get ∀ i . ci ∼ SKIP.

Now we have (c1;; c2, s) ⇒ t
iff ∃ r . (c1, s) ⇒ r ∧ (c2, r) ⇒ t (rule inversion and Seq-rule)
iff s = t (due to ∀ i . ci ∼ SKIP). This proves the Seq-case.

In the If-case we know that is SKIP (IF b THEN c1 ELSE c2), and the IHs are is SKIP
ci −→ ci ∼ SKIP for i = 1, 2. We have to prove IF b THEN c1 ELSE c2 ∼ SKIP, i.e.,
(IF b THEN c1 ELSE c2, s) ⇒ t iff s = t. Again, by def. of is SKIP and IH we get ∀ i .
ci ∼ SKIP.

We have (IF b THEN c1 ELSE c2, s) ⇒ t
iff if bval b s then (c1, s) ⇒ t else (c2, s) ⇒ t (cases on bval, rule inversion, If-rules)
iff s = t (due to ∀ i . ci ∼ SKIP). This proves the Seq-case.

We have proved all cases. QED

b1 ≡ “Less (V ′′x ′′) (N 2)”
b2 ≡ “Less (V ′′x ′′) (N 1)”
c1 ≡ “ ′′x ′′ ::= Plus (V ′′x ′′) (N 1) ;; ′′y ′′ ::= N (−1 ::int)”
c2 ≡ “ ′′x ′′ ::= Plus (V ′′x ′′) (N 1) ;; ′′y ′′ ::= N 1”

Question 4 The condition is (lvars c1 ∪ lvars c2) ∩ vars b2 = {}.

5

2 Palindrome – Induction

A palindrome is a word which reads the same in forward and backward direction. We
introduce an inductive predicate palindrome :: ′a list ⇒ bool :

inductive palindrome where
“palindrome []”
| “palindrome [x]”
| “palindrome xs =⇒ palindrome ([x] @ xs @ [x])”

xs @ ys is the concatenation of the lists xs and ys. rev is list reversal:

“rev [] = []”
“rev (x # xs) = rev xs @ [x]”

1. Show palindrome xs =⇒ rev xs = xs.

2. Show rev xs = xs =⇒ palindrome xs.

You are allowed to use rule induction, structural induction, and the following induction
rule:

P [] ∀ x . P [x] ∀ x y xs. P xs −→ P ([x] @ xs @ [y])

∀ xs. P xs
IND

2.1 Solution

First, we prove the auxiliary lemma rev (xs @ [x]) = [x] @ rev xs, by induction on xs.
The case xs = [] is obvious, in the case x ′ # xs, we have the IH rev (xs @ [x]) = [x]
@ rev xs and have to show rev (x ′ # xs @ [x]) = [x] @ rev (x ′ # xs). We have rev
(x ′#xs@[x]) = rev (xs@[x])@[x ′] = [x]@(rev xs@[x ′]) = [x]@(rev (x ′#xs)). The first
and last equality is due to def. of rev, and associativity of list concatenation, the second
one due to IH.

For 1, we use rule induction. The cases for empty and singleton list are trivial. In the
last case, we have the IH rev xs = xs, and have to show rev ([x] @ xs @ [x]) = [x] @ xs
@ [x]. We have rev ([x]@xs@[x]) = rev (xs@[x])@[x] = [x]@rev xs@[x] = [x]@xs@[x].
The first equality is due to def. of rev, the second one due to the aux-lemma, and the
third one due to IH.

For 2, we use the given induction principle IND. The first two cases are straightforward
due to the intro-rules of palindrome. In the third case, we have the IH rev xs = xs −→
palindrome xs. Moreover, we may assume (*) rev ([x] @ xs @ [y]) = [x] @ xs @ [y].
We have to show palindrome ([x] @ xs @ [y]). Using the intro-rule for palindrome, this
follows from x = y and palindrome xs. Using IH, palindrome xs follows from rev xs =
xs. Thus, it remains to show: x = y ∧ rev xs = xs.

We have rev ([x]@xs@[y]) = rev (xs@[y])@[x] = [y]@rev xs@[x] (analogously to the
proof of 1). With (*), we get x = y ∧ rev xs = xs. QED.

6

3 Hoare-Logic

We extend IMP by an assertion command ASSERT bexp. Intuitively, the execution gets
stuck if the asserted expression evaluates to false, otherwise ASSERT bexp behaves like
SKIP. This is expressed by adding the following rule to the big-step semantics:

assert : bval b s =⇒ (ASSERT b,s) ⇒ s

Moreover, we add the following rule to the Hoare-Logic for total correctness:

(∀ s. P s −→ Q s ∧ bval b s) =⇒ `t {P} ASSERT b {Q}

Questions

1. What does the weakest precondition wpt (ASSERT b) Q look like?

2. Prove: `t {wpt (ASSERT b) Q} ASSERT b {Q}.
3. Prove: `t {P} ASSERT b {Q} =⇒ |=t {P} ASSERT b {Q}.

Hints

1. We have the definition

wpt c Q = (λs. ∃ t . (c,s) ⇒ t ∧ Q t)

However, for Question 1, we want an equation that shows how to expand wpt syn-
tactically, i.e., the right hand side should not contain the Big/Small-step semantics.
You need not prove your equation here.

2. The main idea of the completeness proof is to show `t {wpt c Q} c {Q}. What you
have to prove here is the case for the ASSERT -command. Your characterization
of wpt from Question 1 may be useful here!

3. For the correctness proof, one shows, by induction over c:

`t {P} c {Q} =⇒ |=t {P} c {Q}
What you have to prove here is the (base) case for the ASSERT -command.

7

Extra space for solving Question 3.

3.1 Solution

1. wpt (ASSERT b) Q = λs. Q s ∧ bval b s

2. Using 1), we have to prove: `t {λs. Q s ∧ bval b s} ASSERT b {Q} With the
assert-rule, this follows from the trivial proposition (∀ s. Q s ∧ bval b s −→ Q s
∧ bval b s)

3. We assume `t {P} ASSERT b {Q} and show |=t {P} ASSERT b {Q}. Unfolding
the definition of |=t, we fix an s and assume P s. We have to show (∃ t . (ASSERT
b,s) ⇒ t ∧ Q t) (*).

From the assumption `t {P} ASSERT b {Q}, rule inversion yields ∀ s. P s −→ Q
s ∧ bval b s. With the assumption P s, we get Q s ∧ bval b s, and the assert-rule
of the big-step semantics yields (ASSERT b,s) ⇒ s. This concludes the proof of
(*).

8

4 Abstract Interpretation

IMP is extended by adding a multiplication operator to arithmetic expressions:

datatype aexp = N int | V vname | Plus aexp aexp | Mul aexp aexp

Design a static analysis that tries to determine whether a variable is −1, 0, 1, or any
other value. The abstract domain consists of the values −1 | 0 | 1 | Any, and γ is
defined as:

γ(−1) = {−1}
γ(0) = {0}
γ(1) = {1}
γ(Any) = All integers

1. Define the ordering ≤ on the abstract domain.

2. Define the join-operator t on the abstract domain.

3. Define the functions plus ′ and mul ′ on the abstract domain.

4. Run the analysis on the following program:

x := -1; {A1}

x := x*x + (-1); {A2}

IF b THEN

{A3} x=x+1 {A4}

ELSE

{A5} x=x*10 {A6}

{A7}

We have already added the annotations for you. Iterate the step function on this
program until a fixed point is reached, and document the result of each iteration
in the following table.

0 1 2 3 4 5 6 7 8 9 . . .

A1 ⊥
A2 ⊥
A3 ⊥
A4 ⊥
A5 ⊥
A6 ⊥
A7 ⊥

9

Extra space for solving Question 4.

4.1 Solution

1. x ≤ y iff x=y or y = Any

2. x t y = (if x=y then x else Any)

3. plus’ 0 x = x

plus’ x 0 = x

plus’ -1 -1 = Any

plus’ -1 1 = 0

plus’ 1 -1 = 0

plus’ 1 1 = Any

plus’ _ _ = Any

mul’ 0 x = 0

mul’ x 0 = 0

mul’ 1 x = x

mul’ x 1 = x

mul’ -1 -1 = 1

mul’ _ _ = Any

4.

0 1 2 3 4 5 6 7 8 9 . . .

A1 ⊥ -1

A2 ⊥ 0

A3 ⊥ 0

A4 ⊥ 1

A5 ⊥ 0

A6 ⊥ 0

A7 ⊥ Any

10

5 Fixed Point Theory

Let ’a be a complete lattice with ordering ≤ and f :: ′a⇒ ′a be a monotonic function.
Moreover, let x 0 be a post-fixpoint of f, i.e., x 0 ≤ f x 0. Prove:⊔
{f i(x 0) | i∈N} ≤

⊔
{f i+1 (x 0) | i∈N}

Hint The least upper bound satisfies the following properties

x∈A =⇒ x ≤
⊔

A (upper)

(∀ x∈A. x ≤ u) =⇒
⊔

A ≤ u (least)

5.1 Solution

Due to (least), it is enough to show that for all i, we have f i(x 0) ≤
⊔
{f i+1 (x 0) | i∈N}.

We proceed by cases on i = 0. If i > 0, we have f i(x 0) ∈ {f i+1 (x 0) | i∈N}, and
the proposition follows with (upper). If i = 0, we have f i(x 0) = x 0 ≤ f x 0 due to the
post-fixpoint property, and the proposition follows analogously to the previous case.

11

Extra Sheet 1

12

Extra Sheet 2

	Command Equivalence
	Solution

	Palindrome – Induction
	Solution

	Hoare-Logic
	Solution

	Abstract Interpretation
	Solution

	Fixed Point Theory
	Solution

