
Technische Universität München WS 2016/17
Institut für Informatik 01. 11. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 2

Homework 2.1 Tree traversal

Submission until Tuesday, November 8, 10:00am.

Recall the tree definition from the lecture and the function mirror to mirror trees:

datatype ′a tree = Tip | Node “ ′a tree” ′a “ ′a tree”

fun mirror :: “ ′a tree ⇒ ′a tree” where
“mirror Tip = Tip” |
“mirror (Node l x r) = Node (mirror r) x (mirror l)”

Define a function in order, which traverses a tree in in-order. Prove that your definition
of in order fulfills the specification

theorem
“rev (in order t) = in order (mirror t)”

where rev is the predefined function for reversing lists.

Homework 2.2 Tail-Recursive Form of Addition

Submission until Tuesday, November 8, 10:00am.

The list-reversing function itrev is an example of a tail-recursive function: Note that
the right-hand side of the second equation for itrev is simply an application of itrev to
different arguments.

fun itrev :: “ ′a list ⇒ ′a list ⇒ ′a list” where
“itrev [] ys = ys” |
“itrev (x#xs) ys = itrev xs (x#ys)”

In this homework problem you will define a tail-recursive version of addition for natural
numbers, and prove that it is associative and commutative.

First, define a function add :: nat ⇒ nat ⇒ nat in Isabelle that calculates the sum of its
arguments. Like itrev, your definition should be tail-recursive: That is, in the recursive
case the right-hand side should only be an application of add to different arguments.

1



fun add :: “nat ⇒ nat ⇒ nat”

Next, you must prove that add is associative. Hint: The proof will require at least one
additional lemma. Also remember that some proofs by induction may require general-
ization with arbitrary.

theorem “add (add x y) z = add x (add y z )”

Finally, you must prove that add is commutative. This may require more lemmas in
addition to those used for the associativity proof.

theorem “add x y = add y x”

2


