
Technische Universität München WS 2016/17
Institut für Informatik 08. 11. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 3

This exercise sheet depends on definitions from the file AExp.thy, which may be imported
as follows:

theory Ex03
imports ”∼∼/src/HOL/IMP/AExp”
begin

Exercise 3.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., subst x a ′ a shall be the expression a where every occurrence of variable
x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x :=v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 3.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

1

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
(val×state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function aval ′.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval ′ for this intermediate language should have type aexp ′⇒ state ⇒ val×state. After
completing the entire exercise with this version, modify your definitions to add division
and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “aval ′ (Div ′ (V ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Div ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) < ′′x ′′:=1>”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc: “aval ′ a s = Some (v ,s ′) =⇒ s x ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : split if asm option.splits).

Exercise 3.3 Variables of Expression

Define a function that returns the set of variables occurring in an arithmetic expression.

fun vars :: “aexp ⇒ vname set” where

Show that arithmetic expressions do not depend on variables that they don’t contain.

lemma ndep: “x /∈ vars e =⇒ aval e (s(x :=v)) = aval e s”

2

Homework 3.1 Let expressions

Submission until Tuesday, November 15, 2016, 10:00am.

The following type adds a Let construct to arithmetic expressions:

datatype lexp = N val | V vname | Plus lexp lexp | Let vname lexp lexp

The new Let constructor acts like a local variable binding: When evaluating Let x e1 e2,
we first evaluate e1, bind the resulting value to the variable x and then evaluate e2 in
the new state.

Define a function lval, which evaluates lexp expressions. Note that you can use the
notation f (x := v) to express function update. It is defined as follows:

f (a := b) = (λx . if x = a then b else f x)

fun lval :: “lexp ⇒ state ⇒ val”

Define a function that transforms such an expression into an equivalent one that does
not contain Let. Prove that your transformation is correct. Note: Do the transformation
by inlining the bound variables.

fun inline :: “lexp ⇒ aexp”
value “inline (Let ′′x ′′ (Plus (N 1) (N 1)) (Plus (V ′′x ′′) (V ′′x ′′)))”

— Should return: aexp.Plus (aexp.Plus (aexp.N 1) (aexp.N 1)) (aexp.Plus (aexp.N 1) (aexp.N
1))

lemma val inline: “aval (inline e) st = lval e st”

Define a function that eliminates occurrences of Let x e1 e2 that are never used, i.e.,
where x does not occur free in e2. An occurrence of a variable in an expression is called
free, if it is not in the body of a Let expression that binds the same variable. E.g., the
variable x occurs free in Plus (V x) (V x), but not in Let x (N 0) (Plus (V x) (V x)).
Prove the correctness of your transformation.

fun elim :: “lexp ⇒ lexp”
lemma “lval (elim e) st = lval e st”

Some Hints:

• When different datatypes have a constructor with the same name, they can unam-
biguously be referred to using their qualified name, e.g., aexp.Plus vs. lexp.Plus.

• When you feel that the proof should be trivial to finish, you can also try the
sledgehammer command. It invokes an extensive proof search that includes more
library lemmas.

3

Homework 3.2 Negation Normal Form

Submission until Tuesday, November 15, 2016, 10:00am.

In this assignment, you shall write a function that converts a boolean expression over
variables, conjunction, disjunction, and negation to negation normal form (NNF), and
prove its correctness. A template for this homework is available on the lecture’s home-
page.

We start by defining our version of boolean expressions:

datatype bexp = Not bexp | And bexp bexp | Or bexp bexp | Var vname
fun bval :: “bexp ⇒ state ⇒ bool” — Definition in template

Next, we define a function that check whether a boolean expression is in NNF.

fun is nnf :: “bexp ⇒ bool” — Definition in template

Define a function nnf which converts a boolean expression to NNF. This can be achieved
by “pushing in” negations and eliminating double negations.

fun nnf :: “bexp ⇒ bexp”

Prove that your function is correct. Hint: in case you are struggling to finish the proof
with structural induction, it may be helpful to consider a different induction principle.

lemma [simp]: “is nnf (nnf b)”

lemma [simp]: “bval (nnf b) s = bval b s”

Homework 3.3 Conjunctive Normal Form

Submission until Tuesday, November 15, 2016, 10:00am.

Note: This is a “bonus” assignment worth three additional points, making the maximum
possible score for all homework on this sheet 13 out of 10 points.

Warning: This assignment is quite hard. Partial solutions will also be graded!

In this assignment your task is to extend the previous exercise to allow conversion to
CNF. The approach we will take is to first convert expressions to NNF (negation normal
form), and then apply the distributivity laws to get the CNF. We again start by defining
a function to check whether a expression is in CNF:

fun is cnf :: “bexp ⇒ bool” — Definition in template

The basic idea of converting an NNF to CNF is to first convert the operands of a
disjunction, and then apply the distributivity law to get a conjunction of disjunctions.

4

The function merge (a1∧. . .∧an) (b1∧. . .∧bm) shall return a term of the form (a1∨b1)
∧ (a1∨b2) ∧ . . . (an∨bm) that is equivalent to (a1∧. . .∧an) ∨ (b1∧. . .∧bm).

fun merge :: “bexp ⇒ bexp ⇒ bexp”

Show that merge preserves the semantics and indeed yields a CNF if its operands are
already in CNF. Hint: For functions over multiple arguments, the syntax for induction
is induction a b rule: merge.induct

lemma [simp]: “bval (merge a b) s ←→ bval (Or a b) s”

lemma [simp]: “is cnf a =⇒ is cnf b =⇒ is cnf (merge a b)”

Next, use merge to write a function that converts an NNF to a CNF. The idea is to
first convert the operands of a compound expression, and then compute the overall CNF
(using merge in the Or -case)

fun nnf to cnf :: “bexp ⇒ bexp”

Prove the correctness of your function:

lemma [simp]: “bval (nnf to cnf b) s = bval b s”

lemma [simp]: “is nnf b =⇒ is cnf (nnf to cnf b)”

Finally, combine the two functions nnf and nnf to cnf, to get a function that converts
any boolean expression to CNF:

definition cnf :: “bexp ⇒ bexp”

theorem [simp]: “bval (cnf b) s = bval b s”
theorem [simp]: “is cnf (cnf b)”

5

