
Technische Universität München WS 2016/17
Institut für Informatik 15. 11. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool. Intuitively, R
s t represents a single step from state s to state t.

The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as an inductive predicate:

inductive star :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:

lemma star prepend : “ [[r x y ; star r y z]] =⇒ star r x z”
lemma star append : “ [[star r x y ; r y z]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round:

inductive star ′ :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

Prove the equivalence of your two formalizations:

lemma “star r x y = star ′ r x y”

Exercise 4.2 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisym-
metric and T is a subset of A. Show with a structured, Isar-style proof that then A is
also a subset of T :

assumes “ ∀ x y . T x y ∨ T y x”
and “ ∀ x y . A x y ∧ A y x −→ x = y”
and “ ∀ x y . T x y −→ A x y”

shows “A x y −→ T x y”

1

Exercise 4.3 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values – e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.

fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec comp to show that programs output by the com-
piler never underflow the stack:

theorem exec comp: “exec (comp a) s stk = Some (aval a s # stk)”

Homework 4.1 Palindromes

Submission until Tuesday, November 22, 10:00am.

Formalize a definition of palindromes as an inductive predicate palindrome and prove:

lemma
“palindrome xs =⇒ rev xs = xs”

A palindrome is a list that reads the same from the front and the back.

Homework 4.2 Compilation to Register Machine

Submission until Tuesday, November 22, 10:00am.

In this exercise, you will define a compilation function from expressions to register ma-
chines and prove that the compilation is correct.

The registers in our simple register machines are natural numbers:

type synonym reg = nat

The instructions are:

• load an integer value in register 0 (“Load Immediate”)

• load the value of a variable (from the memory state) in register 0

• Store the value of register 0 in some other register

2

• add to register 0 the value of another register

datatype instr = LDI val | LD vname | MV reg | ADD reg

Recall that a memory state is a function from variable names to integers. A register
state will be a function from registers to integers.

type synonym rstate = “reg ⇒ int”

Complete the following definition of the function for executing an instruction given a
memory state s and a register state σ, the result being a register state.

fun exec :: “instr ⇒ state ⇒ rstate ⇒ rstate” where
“exec (ADD r1) s σ = σ (0 := σ r1 + σ 0)”

Next define the function executing a sequence of register-machine instructions, one at a
time. We have already defined for you the case of empty list of instructions. You need
to add the recursive case.

fun execs :: “instr list ⇒ state ⇒ rstate ⇒ rstate” where
“execs [] s σ = σ”

We are finally ready for the compilation function. Your task is to define a function cmp
that takes an arithmetic expression a and produces a list of register-machine instructions
whose execution in any memory state and register state should lead to a register state
having in 0 the value of evaluating a in that memory state. In addition to the expression
a, the compiler (cmp) will take as it’s second argument a variable r. The compiler is
allowed to freely overwrite all registers with value r ′ > r but should leave the registers
with value 0 < r ′ ≤ r untouched. Now the intended behavior of cmp is:

• cmp (N n) r loads immediate value n

• cmp (V x) r loads x (into register 0)

• cmp (Plus a1 a2) r first compiles a1 placing the result in register 0, moves the
value from register 0 to some other allowed auxiliary register, then compiles a2,
again placing the result in register 0, and finally adds the content of register 0 to
that of the auxiliary register.

Finally, you need to prove the following correctness lemma, which states that our register-
machine compiler is correct, in that executing the compiled instructions of an arithmetic
expression yields (in register 0) the same result as evaluating the expression.

lemma cmpCorrect : “execs (cmp a r) s σ 0 = aval a s”

Hint: For proving correctness, you will need auxiliary lemmas stating that exec commutes
with list concatenation and that the instructions produced by cmp a r do not alter
registers below r.

3

