
Technische Universität München WS 2016/17
Institut für Informatik 22. 11. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Rule Inversion

Recall the evenness predicate ev from the lecture:

inductive ev :: “nat ⇒ bool” where
ev0 : “ev 0” |
evSS : “ev n =⇒ ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:

lemma “ev (Suc (Suc n)) =⇒ ev n”
proof −

assume “ev (Suc (Suc n))” then show “ev n”
proof (cases)

...

qed
qed

Optional : Alternatively, you can write a more automated proof by using the induc-
tive cases command to generate elimination rules. These rules can then be used with
“auto elim:”. (If given the [elim] attribute, auto will use them by default.)

inductive cases evSS elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0 ))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive cases.

lemma “¬ ev (Suc (Suc (Suc 0 )))”

Exercise 5.2 (Deterministic) labeled transition systems

Give all your proofs in Isar, not apply style

A labeled transition system is a directed graph with edge labels. We represent it by a
predicate that holds for the edges.
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type synonym ( ′q , ′l) lts = “ ′q ⇒ ′l ⇒ ′q ⇒ bool”

I.e., for an LTS δ over nodes of type ′q and labels of type ′l, δ q l q ′ means that there is
an edge from q to q ′ labeled with l.

A word from source node u to target node v is the sequence of edge labels one encounters
when going from u to v.

Define a predicate word, such that word δ u w v holds iff w is a word from u to v.

inductive word :: “ ( ′q , ′l) lts ⇒ ′q ⇒ ′l list ⇒ ′q ⇒ bool” for δ

A deterministic LTS has at most one transition for each node and label

definition “det δ ≡ ∀ q a q1 q2 . δ q a q1 ∧ δ q a q2 −→ q1 = q2”

Show: For a deterministic LTS, the same word from the same source node leads to at
most one target node, i.e., the target node is determined by the source node and the
path

lemma
assumes det : “det δ”
shows “word δ q w q ′ =⇒ word δ q w q ′′ =⇒ q ′ = q ′′”

Exercise 5.3 Counting Elements

Give all your proofs in Isar, not apply style

Recall the count function, that counts how often a specified element occurs in a list:

fun count :: “ ′a ⇒ ′a list ⇒ nat” where
“count x [] = 0”
| “count x (y#ys) = (if x=y then Suc (count x ys) else count x ys)”

Show that, if an element occurs in the list (its count is positive), the list can be split
into a prefix not containing the element, the element itself, and a suffix containing the
element one times less

lemma “count x xs = Suc n =⇒ ∃ p s. xs = p @ x # s ∧ count x p = 0 ∧ count x s = n”

Homework 5.1 Paths in Graphs

Submission until Tuesday, November 29, 10:00am.

Give all your proofs in Isar, not apply style

A graph is specified by a set of edges: E :: ( ′v× ′v) set. A path in a graph from u to
v is a list of vertices [u1, . . . , un] such that u = u1, (ui, ui+1) ∈ E, and (un, v) ∈ E.
Moreover, the empty list is a path from any node to itself.

For example, in the graph: {(i, i+ 1) | i ∈ N}, we have that [3 ,4 ,5 ] is a path from 3 to
6, and [] is a path from 1 to 1.
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Note that not including the last node of the path into the list simplifies the formalization.

Formalize an inductive predicate is path

inductive is path :: “ ( ′v× ′v) set ⇒ ′v ⇒ ′v list ⇒ ′v ⇒ bool”

Test your formalization for some examples:

lemma “is path {(i ,i+1 ) | i ::nat . True} 3 [3 ,4 ,5 ] 6”
lemma “is path {(i ,i+1 ) | i ::nat . True} 1 [] 1”

Prove the following two lemmas that allow you to glue together and split paths:

lemma path appendI :
“ [[is path E u p1 v ; is path E v p2 w ]] =⇒is path E u (p1@p2 ) w”

Hint: For the next lemma, do an induction over p1, and, in the induction step, use
rule-inversion on is path.

lemma path appendE :
“is path E u (p1@p2 ) w =⇒ ∃ v . is path E u p1 v ∧ is path E v p2 w”

Homework 5.2 Grammars

Submission until Tuesday, November 29, 10:00am.

Give all your proofs in Isar, not apply style

We define a grammar for strings of the form anbn, where a and b are defined via the
type ab:

datatype ab = a | b

We define the language of all strings of the form anbn by means of the following rules:

S → aSb | ε

inductive S :: “ab list ⇒ bool” where
add : “S w =⇒ S (a # w @ [b])”
| nil : “S []”

Your task is to show that the grammar fulfills the informal specification of the language,
i.e.

lemma S correct :
“S w ←→ (∃ n. w = replicate n a @ replicate n b)”

Here, replicate is a pre-defined function, with replicate n x producing a list consisting of
n copies of x.

Hint: you may want to split the proof into proofs for the two directions of ←→. Your
proofs may require additional lemmas on replicate.
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