Technische Universitat Miinchen WS 2016/17
Institut fiir Informatik 29. 11. 2016
Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c¢2 ~ IF b1 THEN IF b2 THEN c1 ELSE c¢2 ELSE c2

o

WHILE And b1 b2 DO ¢ ~ WHILE b1 DO WHILE b2 DO ¢
3. WHILE And b1 b2 DO ¢ ~ WHILE b1 DO c¢;; WHILE And b1 b2 DO ¢
4. WHILE Or b1 b2 DO ¢ ~ WHILE Or b1 b2 DO c;; WHILE b1 DO ¢

Hint: Use the following definition for Or:

definition Or :: “bexp = bexp = bexp” where
“Or b1 b2 = Not (And (Not b1) (Not b2))”

Exercise 6.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (¢c1 OR c¢3), that decides nondeterministically to execute c¢; or cg; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

. Modify the datatype com to include the new commands OR and ASSUME.
Adapt the big step semantics to include rules for the new commands.
Prove that ¢; OR ¢c5 ~ ¢2 OR c;.

Prove: (IF b THEN c1 ELSE c2) ~ ((ASSUME b; c1) OR (ASSUME (Not b);
c2))

=W

Note: It is easiest if you take the existing theories and modify them.

Homework 6.1 Continue

Submission until Tuesday, December 6, 10:00am.

Note: This homework comes with a template file. You are strongly encouraged to use it!

Your task is to add a continue command to the IMP language. The continue command
should skip all remaining commands in the innermost while loop.

The new command datatype is:

datatype
com = SKIP
| Assign vname aexp (“ == _711000, 61] 61)
| Seq com com (“s;/ -7 [60, 61] 60)
| If bexp com com (“(IF ./ THEN _/ ELSE .)” [0, 0, 61] 61)
| While bexp com (“(WHILE -/ DO _)” [0, 61] 61)
| CONTINUE

The idea of the big-step semantics is to return not only a state, but also a continue flag,
which indicates that a continue has been triggered. Modify/augment the big-step rules
accordingly:

inductive
big_step :: “com X state = bool X state = bool” (infix “=" 55)

Now, write a function that checks that continues only occur in while-loops

fun continue_ok :: “com = bool”

Show that the continue triggered-flag is not set after executing a well-formed command

lemma
“I(e,s) = (continue,t); continue_ok ¢] = —continue”

In the presence of CONTINUE, some additional sources of dead code arise. We want to
eliminate those which can be identified syntactically (that is we do not want to analyze
boolean expressions). For instance, the following holds:

lemma

“(IF b THEN CONTINUE ELSE CONTINUE;; ¢) ~ (CONTINUE)”

Write a function elim that eliminates dead code caused by use of CONTINUE. You
only need to contract commands because of CONTINUE, you do not need to eliminate
SKIPs.
The following should hold for elim:
lemma
“elim ¢ ~ ¢”
Prove this direction:
lemma elim_complete:

“(c, 8) = (b, ') = (elim ¢, s) = (b, s")”

BONUS: Also prove the converse direction:

lemma elim_sound:
“(elim ¢, s) = (b, s") = (¢, s) = (b, s)”

lemma
“elim ¢ ~ ¢”
using elim_sound elim_complete by fast

Homework 6.2 Fuel your executions

Submission until Tuesday, December 6, 10:00am. Note: We provide a template for this
homework on the lecture’s homepage.

If you try to define a function to execute a program, you will run into trouble with the
termination proof (The program might not terminate).

In this exercise, you will define an execution function that tries to execute the program
for a bounded number of loop iterations. It gets an additional nat argument, called
fuel, which decreases for every loop iteration. If the execution runs out of fuel, it stops
returning None. We will work on the variant of IMP from the first exercise.

fun exec :: “com = state = nat = (bool x state) option” where
“exec s 0 = None”
| “exec SKIP s f = Some (False, s)”
| “exec (z::=v) s f = Some (False, s(x:=aval v s))”
| “exec (cl;;¢2) sf = (
case exec cl s f of
None = None
| Some (True, s’y = Some (True, s’)
| Some (False, s’) = exec c2s' f)”
| “exec (IF b THEN c1 ELSE ¢2) s f =
(if bval b s then exec cl s f else exec c2 s f)”
| “exec (WHILE b DO ¢) s (Suc f) = (
if bval b s then
(case (exec ¢ s f) of
None = None |
Some (cont, s') = exec (WHILE b DO ¢) s’ f)
else Some (False, s))”
| “exec CONTINUE s f = Some (True, s)”

Prove that the execution function is correct wrt. the big-step semantics:

theorem exec_equiv_bigstep: “(3i. exec ¢ s f = Some s’) +— (¢,8) = 87

In the following, we give you some guidance for this proof. The two directions are
proved separately. The proof of the first direction should be rather straightforward, and
is left to you. Recall that is usually best to prove a statement for a (complex) recursive
function using its specific induction rule (c.f. sect. 2.3.4 in the book), and that auto can
automatically split “case”-expressions using the split attribute (c.f. sect. 2.5.6).

12

lemma exec_imp_bigstep: “exec ¢ s f = Some s’ = (¢,8) = s

For the other direction, prove a monotonicity lemma first: If the execution terminates
with fuel f, it terminates with the same result using a larger amount of fuel f’ > f. For
this, first prove the following lemma;:

lemma exec_add: “exec ¢ s f = Some s" => exec ¢ s (f + k) = Some s"”

Only the WHILE-case requires some effort. Hint: Make a case distinction on the value
of the condition b. You can find the proof for the easy cases in the template.

Now the monotonicity lemma that we want follows easily:

lemma exec_mono: “exec ¢ s f = Some (brk, s') = f' > f = exec ¢ s f' = Some (brk, s')”
by (auto simp: exec_add dest: le_Suc_ex)

The main lemma is proved by induction over the big-step semantics. Recall the adapted
induction rule big_step_induct that nicely handles the pattern big_step (c,s) (brk, s').
You can find the skip, while-true and if-true cases in the template. The other cases are
left to you.

lemma bigstep_imp_si:
“(c,8) = (brk, s') = Jk. exec ¢ s k = Some (brk, s’)”
Finally, prove the main theorem of the homework:

theorem exec_equiv_bigstep: “(Ik. exec ¢ s k = Some (brk, s)) «— (c,s) = (brk, s')”

