
Technische Universität München WS 2016/17
Institut für Informatik 06. 12. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma “deskip c ∼ c”

Exercise 7.2 Small step pre-order

We define a pre-order � on programs that uses the small-step semantics. The relation
p � p ′ shall hold if p ′ computes for any input the same output as p, and in at most the
same number of steps.

The following relation is the n-steps reduction relation:

inductive
nsteps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60 ]999 )

where
zero steps: “cs →ˆ0 cs” |
one step: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

Prove the following lemmas:

lemma small steps n: “cs →∗ cs ′ =⇒ (∃n. cs →ˆn cs ′)”
lemma n small steps: “cs →ˆn cs ′ =⇒ cs →∗ cs ′”
lemma nsteps trans: “cs →ˆn1 cs ′ =⇒ cs ′→ˆn2 cs ′′ =⇒ cs →ˆ(n1+n2 ) cs ′′”

The pre-order relation is defined as follows:

definition
small step pre :: “com ⇒ com ⇒ bool” (infix “�” 50 ) where

1



“c � c ′ ≡ (∀ s t n. (c,s) →ˆn (SKIP , t) −→ (∃ n ′ ≥ n. (c ′, s) →ˆn ′ (SKIP , t)))”

Prove the following lemma:

lemma small eqv implies big eqv :
assumes “c � c ′” “c ′ � c”
shows “c ∼ c ′”

Exercise 7.3 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5 ) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of comp bigstep to your modified compiler.

Homework 7.1 Compiling REPEAT

Submission until Tuesday, December 2, 10:00am.

We extend com with a REPEAT c UNTIL b statement, adding the following rules to
our big-step semantics:
RepeatTrue: [[(c, s1) ⇒ s2; bval b s2]] =⇒ (REPEAT c UNTIL b, s1) ⇒ s2
RepeatFalse: [[(c, s1)⇒ s2; ¬ bval b s2; (REPEAT c UNTIL b, s2)⇒ s3]] =⇒ (REPEAT
c UNTIL b, s1) ⇒ s3

Building on this, extend the compiler ccomp and its correctness theorem ccomp bigstep to
REPEAT loops. Hint: the recursion pattern of the big-step semantics and the compiler
for REPEAT should match.

Download the files Repeat Big Step.thy and Repeat Compiler Template.thy. Finish the
definition of ccomp and the proof of ccomp bigstep in Repeat Compiler Template.thy,
and submit this theory using as filename the schema FirstnameLastname2 .thy.

Homework 7.2 Commuting sequences of commands

Submission until Tuesday, December 13, 10:00am.

Write a function that collects all variables that occur in a command. (Hint: You need
to write such functions also for boolean and arithmetic expressions)

fun vars :: “com ⇒ vname set” where

2



Then show the following two lemmas:

lemma aval equiv :
“ (c, s) ⇒ t =⇒ varsa a ∩ vars c = {} =⇒ aval a t = aval a s”

lemma bval equiv :
“ (c, s) ⇒ t =⇒ varsb b ∩ vars c = {} =⇒ bval b t = bval b s”

Finally prove that a sequence of commands can be commuted if the commands do not
share any common variables:

lemma Seq commute:
assumes “vars c1 ∩ vars c2 = {}”

shows “c1 ;;c2 ∼ c2 ;;c1”
oops

One possible way to get there, is to prove the following auxiliary lemma first:

lemma Seq commute ′:
assumes “ (c1 , s) ⇒ s ′” “ (c2 , s ′) ⇒ t” “vars c1 ∩ vars c2 = {}”

shows “ (c2 ;;c1 , s) ⇒ t”

You only need to do the cases for while-loops and assignment. The latter may necessitate
another helper lemma.

lemma Seq commute:
assumes “vars c1 ∩ vars c2 = {}”

shows “c1 ;;c2 ∼ c2 ;;c1”

Homework 7.3 Algebra of Commands

Submission until Tuesday, December 13, 10:00am.

We define an extension of the language with parallel composition (‖).for which we con-
sider the small-step equivalence

Your task will be to prove various algebraic laws for the small-step equivalence. The
most helpful methods will be number induction and/or pair-based rule induction over
the nsteps relation, using nsteps induct (provided below).

datatype
com =

— sequential part as before —
| Par com com (infix “ ‖” 59 )

inductive
small step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55 )

where
— sequential part as before —
ParL: “ (c1 ,s) → (c1 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ′ ‖ c2 ,s ′)” |
ParLSkip: “ (SKIP ‖ c,s) → (c,s)” |
ParR: “ (c2 ,s) → (c2 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ‖ c2 ′,s ′)” |

3



ParRSkip: “ (c ‖ SKIP ,s) → (c,s)”

lemmas small step induct = small step.induct [split format(complete)]
inductive
nsteps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60 ]999 )

where
zero steps[simp,intro]: “cs →ˆ0 cs” |
one step[intro]: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

lemmas nsteps induct = nsteps.induct [split format(complete)]

definition
small step pre :: “com ⇒ com ⇒ bool” (infix “�” 50 ) where
“c � c ′ ≡ (∀ s t n. (c,s) →ˆn (SKIP , t) −→ (∃ n ′ ≥ n. (c ′, s) →ˆn ′ (SKIP , t)))”

Based on the pre-order on programs, define an equivalence relation ≈ on programs.

Now prove commutativity and associativity of ‖. You are free to do either automatic or
Isar proofs.

lemma Par commute: “c ‖ d ≈ d ‖ c”

lemma Par assoc: “ (c ‖ d) ‖ e ≈ c ‖ (d ‖ e)”

4


