Technische Universitat Miinchen WS 2016/17
Institut fiir Informatik 06. 12. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Deskip

Define a recursive function

fun deskip :: “com = com”
that eliminates as many SKIPs as possible from a command. For example:
deskip (SKIP;; WHILE b DO (z = a;; SKIP)) = WHILE b DO z ::= a

Prove its correctness by induction on c:

lemma “deskip ¢ ~ ¢”

Exercise 7.2 Small step pre-order

We define a pre-order < on programs that uses the small-step semantics. The relation
p =< p’shall hold if p’ computes for any input the same output as p, and in at most the
same number of steps.

The following relation is the n-steps reduction relation:

inductive
nsteps :: “com * state = nat = com x state = bool”
(“ =" _7160,1000,601999)

where

zero_steps: “cs — "0 c¢s” |
one_step: “cs = ¢s' = ¢s’ = "n cs’ = c¢s = "(Suc n) cs""”

Prove the following lemmas:

lemma small_steps_n: “cs —* cs’ = (In. ¢cs = "n cs’)”
lemma n_small_steps: “cs — "n cs’' = cs —* cs'”
lemma nsteps_trans: “cs — "nl c¢s’ = ¢s’ = "n2 cs” = ¢s - (n1+n2) cs’”

The pre-order relation is defined as follows:

definition
small_step_pre :: “com = com = bool” (infix “<” 50) where

“c3c¢'=(stn. (¢,s) =>"n (SKIP,t) — (3 n’ > n. (¢, s) = "n' (SKIP, t)))”

Prove the following lemma:

lemma small_equ_implies_big_equ:
assumes “c < ¢'” ‘%' < ¢”
shows “c ~ ¢'”

Exercise 7.3 Compiler optimization

A common programming idiom is IF b THEN ¢, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V "z") (N 5) THEN "y" := N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of comp_bigstep to your modified compiler.

Homework 7.1 Compiling REPEAT

Submission until Tuesday, December 2, 10:00am.

We extend com with a REPEAT ¢ UNTIL b statement, adding the following rules to
our big-step semantics:

RepeatTrue: [(¢, s1) = s2; bval b s3] = (REPEAT ¢ UNTIL b, s1) = so
RepeatFalse: [(c, s1) = s2; = bval b so; (REPEAT ¢ UNTIL b, s2) = s3] = (REPEAT
¢ UNTIL b, s1) = s3

Building on this, extend the compiler ccomp and its correctness theorem ccomp_bigstep to
REPFEAT loops. Hint: the recursion pattern of the big-step semantics and the compiler
for REPEAT should match.

Download the files Repeat_Big_Step.thy and Repeat_Compiler_Template.thy. Finish the
definition of ccomp and the proof of ccomp_bigstep in Repeat_Compiler_Template.thy,
and submit this theory using as filename the schema FirstnameLastname2.thy.

Homework 7.2 Commuting sequences of commands

Submission until Tuesday, December 13, 10:00am.

Write a function that collects all variables that occur in a command. (Hint: You need
to write such functions also for boolean and arithmetic expressions)

fun vars :: “com = vname set” where

Then show the following two lemmas:

lemma aval_equiv:

“(ey 8) = t = varsa a Nwars ¢ = {} = aval a t = aval a s”
lemma bval_equiv:

“(e, 8) = t => varsb b Nwars ¢ = {} = bval bt = bval b s”

Finally prove that a sequence of commands can be commuted if the commands do not
share any common variables:

lemma Seq_commute:
assumes ‘“vars cI N wvars ¢2 = {}”
shows “c1;;¢2 ~ c2;;¢1”
oops

One possible way to get there, is to prove the following auxiliary lemma first:

lemma Seq_commute’:
assumes “(c1, s) = s'7 “(c2, s') = t” “vars ¢1 N wvars c2 = {}”
shows “(¢2;;cl, s) = t”

You only need to do the cases for while-loops and assignment. The latter may necessitate
another helper lemma.
lemma Seq_commute:

assumes ‘“vars c¢I N wvars c2 = {}”
shows “c1;;¢2 ~ ¢2;;¢1”

Homework 7.3 Algebra of Commands
Submission until Tuesday, December 13, 10:00am.

We define an extension of the language with parallel composition (||).for which we con-
sider the small-step equivalence
Your task will be to prove various algebraic laws for the small-step equivalence. The

most helpful methods will be number induction and/or pair-based rule induction over
the nsteps relation, using nsteps_induct (provided below).

datatype
com =
— sequential part as before —
| Par com com (infix “||” 59)
inductive
small_step :: “com * state = com * state = bool” (infix “—7 55)
where

— sequential part as before —

ParL: “(cl,s) — (c1',s") = (cl || ¢2,5) = (c1']| ¢2,s")" |
ParLSkip: “(SKIP || c¢,s) — (¢,8)” |

ParR: “(c2,s) — (¢2's") = (c1 || ¢2,5) = (cl || ¢2',s")7 |

ParRSkip: “(c || SKIP,s) — (c,s)”

lemmas small_step_induct = small_step.induct[split_format(complete)]

inductive
nsteps :: “com * state = nat = com x state = bool”
(“ =" _7160,1000,601999)

where

zero_steps[simp,introl: “cs — "0 ¢s” |

one_step[intro]: “cs — cs' = ¢s’ = "n ¢s' = ¢s — "(Suc n) cs””

lemmas nsteps_induct = nsteps.induct|split_format(complete)]

definition
small_step_pre :: “com = com = bool” (infix “<” 50) where
“c3c¢'=(stn. (¢,s) =>"n (SKIP,t) — (3 n’ > n. (¢, s) = "n' (SKIP, t)))”

Based on the pre-order on programs, define an equivalence relation & on programs.

Now prove commutativity and associativity of ||. You are free to do either automatic or
Isar proofs.

lemma Par_commute: “c || d = d || ¢”

lemma Par_assoc: “(c || d) || e=c | (d] e)”

