
Technische Universität München WS 2016/17
Institut für Informatik 13. 12. 2016

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Type checker as recursive functions

Reformulate the inductive predicates Γ ` a : τ , Γ ` b and Γ ` c as three recursive
functions

fun atype :: “tyenv ⇒ aexp ⇒ ty option”
fun bok :: “tyenv ⇒ bexp ⇒ bool”
fun cok :: “tyenv ⇒ com ⇒ bool”

and prove

lemma atyping atype: “ (Γ ` a : τ) = (atype Γ a = Some τ)”
lemma btyping bok : “ (Γ ` b) = bok Γ b”
lemma ctyping cok : “ (Γ ` c) = cok Γ c”

Exercise 8.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

2. Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion functions nat, int, and real.

Homework 8.1 A Typed Language

Submission until Tuesday, December 20, 2016, 10:00am.

Use the template file hw08 tmpl.thy.

We unify boolean expressions bexp and arithmetic expressions aexp into one expressions
language exp. We also define a datatype val to represent either integers or booleans.

1

We then give a type system and small semantics. Your task is to show preservation and
progress of the type system, i.e. replace all oops by valid proofs.

Preparation 1: We define unified values and expressions:

datatype val = Iv int | Bv bool
datatype exp =
N int | V vname | Plus exp exp | Bc bool | Not exp | And exp exp | Less exp exp

Evaluation is now defined as an inductive predicate only working when the types of the
values are correct:

inductive eval :: “exp ⇒ state ⇒ val ⇒ bool” where
“eval (N i) s (Iv i)” |
“eval (V x) s (s x)” |
“eval a1 s (Iv i1) =⇒ eval a2 s (Iv i2) =⇒ eval (Plus a1 a2) s (Iv (i1 + i2))” |
“eval (Bc v) s (Bv v)” |
“eval b s (Bv bv) =⇒ eval (Not b) s (Bv (¬ bv))” |
“eval b1 s (Bv bv1) =⇒ eval b2 s (Bv bv2) =⇒ eval (And b1 b2) s (Bv (bv1 ∧ bv2))” |
“eval a1 s (Iv i1) =⇒ eval a2 s (Iv i2) =⇒ eval (Less a1 a2) s (Bv (i1 < i2))”

Preparation 2: The small-step semantics are as before, we just replaced aval and bval
with eval.

inductive
small step :: “ (com × state) ⇒ (com × state) ⇒ bool” (infix “→” 55)

where
Assign: “eval a s v =⇒ (x ::= a, s) → (SKIP , s(x := v))” |
IfTrue: “eval b s (Bv True) =⇒ (IF b THEN c1 ELSE c2,s) → (c1,s)” |
IfFalse: “eval b s (Bv False) =⇒ (IF b THEN c1 ELSE c2,s) → (c2,s)” |

. . .

Preparation 3: We introduce the type system.

datatype ty = Ity | Bty

type synonym tyenv = “vname ⇒ ty”

inductive etyping :: “tyenv ⇒ exp ⇒ ty ⇒ bool”
(“ (1 / `/ (:/))”)

where
“Γ ` N i : Ity” |
“Γ ` V x : Γ x” |
“Γ ` a1 : Ity =⇒ Γ ` a2 : Ity =⇒ Γ ` Plus a1 a2 : Ity” |
“Γ ` Bc v : Bty” |
“Γ ` b : Bty =⇒ Γ ` Not b : Bty” |
“Γ ` b1 : Bty =⇒ Γ ` b2 : Bty =⇒ Γ ` And b1 b2 : Bty” |
“Γ ` a1 : Ity =⇒ Γ ` a2 : Ity =⇒ Γ ` Less a1 a2 : Bty”

inductive ctyping :: “tyenv ⇒ com ⇒ bool” (infix “`” 50) where
Skip ty : “Γ ` SKIP” |

2

Assign ty : “Γ ` a : Γ x =⇒ Γ ` x ::= a” |
Seq ty : “Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` c1;;c2” |
If ty : “Γ ` b : Bty =⇒ Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` IF b THEN c1 ELSE c2” |
While ty : “Γ ` b : Bty =⇒ Γ ` c =⇒ Γ ` WHILE b DO c”

We define a state typing styping to describe the type context of a state.

fun type :: “val ⇒ ty” where
“type (Iv i) = Ity” |
“type (Bv r) = Bty”
definition styping :: “tyenv ⇒ state ⇒ bool” (infix “`” 50) where
“Γ ` s ←→ (∀ x . type (s x) = Γ x)”

Task 1: Show preservation and progress on expressions:

lemma epreservation: “Γ ` a : τ =⇒ eval a s v =⇒ Γ ` s =⇒ type v = τ”
lemma eprogress: “Γ ` a : τ =⇒ Γ ` s =⇒ ∃ v . eval a s v”

Task 2: Show progress and preservation on commands:

theorem progress: “Γ ` c =⇒ Γ ` s =⇒ c 6= SKIP =⇒ ∃ cs ′. (c,s) → cs ′”
theorem styping preservation: “ (c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ Γ ` s ′”
theorem ctyping preservation: “ (c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` c ′”
theorem type sound :
“ (c,s) →∗ (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ c ′ 6= SKIP =⇒ ∃ cs ′′. (c ′,s ′) → cs ′′”

Hint : For most of the proof work, you should be able to closely follow the proofs in the
original IMP theory.

3

Homework 8.2 A Type System for Physical Units

Submission until Tuesday, December 20, 2016, 10:00am.

Start with a fresh copy of Types.thy. We will define a language that only computes on
real values but attaches a physical unit to every constant. The binary operators are
addition and multiplication (op ∗ in Isabelle/HOL). The semantics shall get stuck if
trying to add or compare values with different physical units.

Define a type system that uses physical units as types. Well-typed programs must
not add or compare values with different physical units. Adapt the theory up to the
type sound -theorem, i.e., show that in a well-typed program, every reachable non-skip
state can make another step. Some steps of this development are detailed below.

Note: Please turn in two separate files for the two homework exercises.

A unit is either an elementary unit (Newton or Meters), or a product of units.

datatype unit = N | M | Prod unit unit

We only consider real values but attach units to values:

type synonym val = “real × unit”

datatype aexp = Pc val | V vname | Plus aexp aexp | Mult aexp aexp

You will need to define an equality predicate unit eq :: unit ⇒ unit ⇒ bool on units.
Note that e.g. Prod N M should be the same as Prod M N.

The types are simply all possible units:

type synonym ty = unit

It is easy to read types from values in our setting: they are already attached to them.
Thus a well-typed state is expressed as follows:

definition styping :: “tyenv ⇒ state ⇒ bool” (infix “`” 50)
where “Γ ` s ←→ (∀ x . unit eq (snd (s x)) (Γ x))”

4

