
Technische Universität München WS 2016/17
Institut für Informatik 17. 1. 2017

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in
variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”
by auto

Show that MAX satisfies the following Hoare-triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Now define a program MUL that returns the product of x and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints You may want to use the lemma algebra simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof for c2, thus
instantiating the intermediate assertion, and then do the proof for c1. However, the first
premise of the Seq-rule is about c1. Hence, you may want to use the rotated -attribute,
that rotates the premises of a lemma:

lemmas Seq bwd = Seq [rotated]

1

lemmas hoare rule[intro?] = Seq bwd Assign Assign ′ If

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong = (′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::= N 0)”

Prove that MAX wrong also satisfies the specification for MAX :

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 11.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form ` {P} x ::=a {. . . },
where . . . is some suitable postcondition. Hint: To prove this rule, use the completeness
property, and prove the rule semantically.

lemmas fwd Assign ′ = weaken post [OF fwd Assign]

Redo the proofs for MAX and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Homework 11.1 Hoare Logic OR

Submission until Tuesday, January 24, 2017, 10:00am.

Extend IMP with a new command c1 OR c2 that is a nondeterministic choice: it may
execute either c1 or c2. Add the constructor

Or com com ("_ OR/ _" [60, 61] 60)

2

to datatype com in theory Com, adjust the definition of the big-step semantics in theory
Big Step, add a rule for OR to the Hoare logic in theory Hoare, and adjust the soundness
and completeness proofs in theory Hoare Sound Complete.

All these changes should be quite minimal and very local if you have got the definitions
right.

Homework 11.2 Fixed point reasoning

Submission until Tuesday, January 24, 2017, 10:00am.

In the lecture, you have seen the Knaster-Tarski least fixed point theorem. The relevant
constant is lfp :: (′a ⇒ ′a) ⇒ ′a, which assumes a complete lattice order ≤ on ′a and
returns, for each monotonic operator f :: ′a ⇒ ′a, its least fixed point lfp f.

In the lectures as well as in this exercise, one only deals with the case where ′a is ′b set
(the type of sets over an arbitrary type ′b) and ≤ is ⊆ (set inclusion). In this exercise,
you will prove a different kind of fixed point theorem. It says that if there are two
injective functions, one from ′a to ′b, and one the other way round, then there also exists
an bijection between ′a and ′b:

theorem
assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
shows “ ∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

This is a fixed point theorem because we will use a least fixed point for the construction
of h. Use the provided template and follow the proof outline below to finish the proof.

theorem
assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
shows “ ∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

proof
def S ≡ “lfp (λX . − (g ‘ (− (f ‘ X))))”
let ?g ′ = “inv g”
def h ≡ “λz . if z ∈ S then f z else ?g ′ z”

have “S = − (g ‘ (− (f ‘ S)))”

have ∗: “?g ′ ‘ (− S) = − (f ‘ S)”

show “inj h ∧ surj h”
proof

from ∗ show “surj h”
have “inj on f S”
moreover have “inj on ?g ′ (− S)”

moreover
{ fix a b

assume “a ∈ S” “b ∈ − S” and eq : “f a = ?g ′ b”
have False }

3

ultimately show “inj h”
qed

qed

4

