Technische Universitat Miinchen WS 2016/17
Institut fiir Informatik 24. 01. 2017
Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Using the VCG

Use the VCG to prove correct a multiplication and a square root program:

definition MUL :: com
lemma “+
{As. 0 < s "'y" N s=sorig}
MUL
{As. s 2" =s"z" % s "y" AN Vou. v¢{"2",)"c""} — s v = sorig v)}”

definition “SQRT =

"p!" = N 0y
"g! = N 13
WHILE (Not (Less (V "z") (V "s"))) DO (
"p! = Plus (V "'r"") (N 1);;
//s// = Plus (V //s//) (V //,],,//)”
//8// = Plus (V //8//) (V //,],,//)’7
s’ = Plus (V "'s") (N 1)
)77

lemma “+
{As. s=sorig A s "'z" > 0}
SQRT
{As. (s "r'")°2 < sz Ns "z < (s "r"+1)°2 N (Vo v¢{"s")'r""} — s v = sorig v)}”

Exercise 12.2 Total Correctness

Prove total correctness of the multiplication and the square root program.

Prove the following syntax-directed conditional rule (for total correctness):

lemma IfT":
assumes “; {P1} ¢; {Q}” and “F, {P2} c2 {Q}”
shows “b; {As. (bval b s — P1 s) A (— bval bs — P2 s)} IF b THEN ¢1 ELSE ¢o {Q}”

lemmas Seq_bwd = Hoare_Total.Seq[rotated)
lemmas hoareT_rule[intro?] = Seq_bwd Hoare_Total.Assign Hoare_Total.Assign’ IfT

lemma “t;
{As. 0 < s ""y" N s=sorig}
MUL
{As. s "2 =s"z" % s "y" AN Vo, v&{"2",)""c""} — s v = sorig v)}”
lemma “+;
{As. s=sorig A s "'z" > 0}
SQRT
{As. (s "'r")2 < sz Ns "z < (s"r"+1)°2 AN (Vv v¢{"s")"'r""} — s v = sorig v)}”

Homework 12.1 Program Verification

Submission until Tuesday, 31 January 2017, 10:00am.

Define an annotated command Cdiff that subtracts z from y and prove:

lemma “F {Xs. s "z =z ANsy"=y N0 <z} strip (Cdiff vy) {\e. t "y =y — x}”

Homework 12.2 Collecting Semantics

Submission until Tuesday, 31 January 2017, 10:00am.
Note: This is a typical exam exercise.
Show the iterative computation of the collecting semantics of the following program in
a table like the one on page 228 of the book.

x :=2; vy :=1 {4y} ;

{A1}

WHILE O < x

DO {A2} (y :=y *x; x :=x -1 {A3})

{As}
Note that two annotations have been suppressed to make the task less tedious. You do
not need to show steps where only the suppressed annotations change.
Because the program contains two variables, the state sets in the table should be repre-
sented as sets of pairs (x,y). In order to keep the table compact, you can also just write
xy, e.g. 02 instead of (0,2) — the values of the variables do not exceed single digits.

Ao | {}
A {}
Az | {}
As | {}
Aq| {3

Homework 12.3 A Hoare Calculus with Execution Times
Submission until Tuesday, 31 January 2017, 10:00am.

In this homework, we will consider a hoare calculus with execution times. We first give
a modified big-step semantics to account for execution times. A judgement of the form
(¢, s) = n | t has the intended meaning that we can get from state s to state ¢ by an
terminating execution of program c that takes exactly n time steps.

inductive
big_step_t :: “com X state = nat = state = bool” (“. = _| 7 55)
where
Skip: “(SKIP,s) = Suc 0 | s” |
Assign: “(z = a,8) = Suc 0 |} s(z := aval a 5)” |

Seq: “[(cl,81) = z |} s2; (c2,52) = y | 83 ; z=x+y | = (cl;;¢2, s1) = z || s37 |
IfTrue: “[bval bs; (cl,s) = z | t; y=x+1] = (IF b THEN c1 ELSE ¢2, s) = y | t” |
IfFalse: “[—bval b s; (c2,8) = z | t; y=z+1 | = (IF b THEN c1 ELSE ¢2,s) = y | t” |
WhileFalse: “[—bval b s | = (WHILE b DO c¢,s) = Suc 0 | s” |

While True:

“[bval b s1; (c,s1) = z || s2; (WHILE b DO ¢, s2) = y || $3; I+z+y=z]

= (WHILE b DO ¢, s1) = z | s3”

Next, we define a Hoare calculus that also accounts for execution times.

type_synonym assn = “state = bool”
type_synonym tbd = “state = nat”

abbreviation state_subst :: “state = aexp = vname = state”
where “s[a/z] = s(z = aval a 5)”

definition hoare_Twalid :: “assn = com = tbd = assn = bool”
“Er{P}tc{qgl Q} +— (Vs.Ps— Ttp. (¢,s)=pUt)Ap<(gs)NQt))”

inductive
hoareT :: “assn = com = tbd = assn = bool” where
Skip: “Fp {P} SKIP {\s. Suc 0 | P}” |
Assign: “Fr {Xs. P(s[a/z])} x:=a {As. Suc 0 | P}” |
Seq: “[Nu.Fr {As. PrsANe2’ s=u}ci{el J Xs. PysAeZs<u};
Fr {P2} ca { e2 | P3};
Ns. P1 s = els+ e2 s<es|
= br {P1} cizie2 { e § P3}” |
If: “[Fr {Xs. P s Abvalbs}er{el § Q};br {Xs. Ps A —bvalbs}ca{el | Q}]
= g {P} IF b THEN ¢; ELSE ¢5 {\s. el s + Suc 0 | Q}” |
While:
“I(Au z:nat.
Fr {As. INV (z+1) s ANe's=u}c{e”" I As. INVzs Aes < u});
(As z. INV (z+1) s = bvalbs Nes>1+¢e' s+ e"s);
(ANs. INVOs = —bvalbsN1<es)

]

— Fr {\s. 32 INV z5)} WHILE b DO ¢ {e || INV 0}" |
conseq: “[Vs. P's — (PsANe's<es);br{Ptc{e'| Q};Vs. Qs — Q' s] =
Fr P} c{el Q}”

Your task is to prove soundness of the calculus:

theorem hoareT_sound: “Fp {P} ¢ {e || Q} = E=r {P} c {e | Q}”

Download the file Big_StepT.thy from the website and use the provided template. You
can follow the outline of the soundness proof for the Hoare calculus that you know from
the lecture. As for previous exercise sheets, you can split your homework submission
into two files.

