
Technische Universität München WS 2017/18
Institut für Informatik 31.10.2017

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 3

Homework 3.1 Extending arithmetic expressions

Submission until Tuesday, November 7, 10:00am.

We define a new type for arithmetic expressions with two changes from aexp:

• variables carry an additional constant factor

• a new constructor for negation

datatype mexp =
N int | Plus mexp mexp |
Neg mexp |
V int vname

First, define a function mval, analogously to aval.

fun mval :: “mexp ⇒ state ⇒ val”
value “mval (V 3 ′′x ′′) < ′′x ′′:=3> = 9”
value “mval (Neg (N 3)) <> = −3”

We now want to optimize these expressions in multiple different ways.

Simplification Adapt the asimp function from the lecture that evaluates constant
subexpressions and eliminates all occurrences of mexp.N 0 in additions. Prove correct-
ness!

Accumulating variables In an expression that contains multiple occurrences of a
particular variable, all occurrences can be replaced by a single one. For example, the
expression mexp.Plus (mexp.V 3 ′′x ′′) (mexp.V 2 ′′x ′′) is equivalent to mexp.V 5 ′′x ′′.
Define a function optimize that performs this optimization for one variable and prove
its correctness. Furthermore, prove that optimize only contains one single occurrence of
the specified variable.

Hints:

1

• Start with a function that accumulates all constant factors for the variable.

• For the last lemma, you need to define an auxiliary function that counts occurrences
of variables.

• You may need more auxiliary functions.

• For your proofs, you may need some additional arithmetic facts, that you can pass
to the simplifier as follows: apply (auto simp add : algebra simps)

fun optimize :: “mexp ⇒ vname ⇒ mexp”

Elimination of negation The Neg constructor is unneeded. Provide a function
un neg that removes negation and prove that it does. Also prove correctness.

Hint: You have to define a function no negs that checks that an expression contains no
negation.

fun un neg :: “mexp ⇒ mexp”

2

