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Exercise 8.1 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

2. Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion function real of int (int ⇒ real).

Exercise 8.2 Security type system: bottom-up with subsumption

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

1. Define a bottom-up security type system for information flow control with sub-
sumption rule (see below, add the subsumption rule).

2. Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

inductive sec type2 ′ :: “com ⇒ level ⇒ bool” (“ (` ′ : )” [0 ,0 ] 50 ) where
Skip2 ′: “` ′ SKIP : l” |
Assign2 ′: “sec x ≥ sec a =⇒ ` ′ x ::= a : sec x” |
Semi2 ′: “ [[ ` ′ c1 : l ; ` ′ c2 : l ]] =⇒ ` ′ c1 ;; c2 : l” |
If2 ′: “ [[ sec b ≤ l ; ` ′ c1 : l ; ` ′ c2 : l ]] =⇒ ` ′ IF b THEN c1 ELSE c2 : l” |
While2 ′: “ [[ sec b ≤ l ; ` ′ c : l ]] =⇒ ` ′ WHILE b DO c : l”

1



General homework instructions

All proofs in the homework must be carried out in Isar style.

Homework 8.1 Security type systems: bottom-up vs. top-down

Submission until Tuesday, December 12, 10:00am.

Prove the equivalence of the bottom-up system (` : ) and the top-down system ( ` )
without subsumption rule. Carry out a direct correspondence proof in both directions
without using the ` ′ system.

lemma bottom up impl top down: “` c : l =⇒ l ` c”
lemma top down impl bottom up: “l ` c =⇒ ∃ l ′ ≥ l . ` c : l ′”

Homework 8.2 Explicit type coercions

Submission until Tuesday, December 12, 10:00am.

In the tutorial, we have introduced implicit coercions in the typing of arithmetic and
boolean expressions. Here, we want to use explicit coercions. In particular, we want to

• add a new constructor Real :: aexp ⇒ aexp to aexp,

• extend taval to support this new constructor,

• extend atyping and btyping to return an expression with coercions inserted (which
we will call an elaborated expression), and

• treat addition and comparison of different types as runtime errors in the semantics.

Copy and modify Types as necessary, including all proofs below (you don’t have to
implement nor prove soundness for command elaboration).

Note: It is not recommended to keep the existing introduction and elimination rules, as
they might make the automated tactics loop.

datatype aexp = Ic int | Rc real | Real aexp | V vname | Plus aexp aexp

Note that coercing an arithmetic expression of type Rty using Real should be considered
a type error. Your elaboration implementation should add coercions where possible and
necessary, but you’re free to insert them where they fit. For example, the expression
Plus (Rc 0 ) (Plus (Ic 1 ) (Ic 2 )) could be elaborated to Plus (Rc 0 ) (Real (Plus (Ic 1 )
(Ic 2 ))).
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datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

inductive aelab :: “tyenv ⇒ aexp ⇒ aexp ⇒ ty ⇒ bool”
(“ (1 / `/ (  :/ ))” [50 ,0 ,0 ,50 ] 50 )

inductive belab :: “tyenv ⇒ bexp ⇒ bexp ⇒ bool” (“ (1 / `/ (  ))” [50 ,0 ,50 ] 50 )

Syntax examples: Γ ` t  t ′ : τ and Γ ` t  t ′ : τ

You have to come up with the following lemma statements yourself.

lemma apreservation:
lemma aprogress:
lemma bprogress:

Is your aelab predicate deterministic? If yes, give an informal proof sketch, if no, give a
counterexample.
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