
Technische Universität München WS 2017/18
Institut für Informatik 12.12.2017

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Note that available assignments can be used for program optimization, by avoiding
recomputation of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A” |
“AA (x ::= a) A = (if x ∈ vars a then {} else {(x , a)})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}” |

“AA (c1;; c2) A = (AA c2 ◦ AA c1) A” |
“AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A” |
“AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

fun gen :: “com ⇒ (vname × aexp) set”
and “kill” :: “com ⇒ (vname × aexp) set”
lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:

1



theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

General homework instructions

All proofs in the homework must be carried out in Isar style.

Homework 9.1 Definite initialization analysis

Submission until Tuesday, December 19, 10:00am.

Define the definite initialization analysis as two recursive functions ivars and ok such
that ivars computes the set of definitely initialized variables and ok checks that only
initialized variables are accessed.

fun ivars :: “com ⇒ vname set”
fun ok :: “vname set ⇒ com ⇒ bool”
lemma “D A c A ′ =⇒ A ′ = A ∪ ivars c ∧ ok A c”
lemma “ok A c =⇒ D A c (A ∪ ivars c)”

Homework 9.2 Dependencies

Submission until Tuesday, December 19, 10:00am.

Hint: Use the template file; it contains further instructions and definitions.

The task is to define a dependency analysis between variables. We say that variable x
depends on y after command c if the value of y at the beginning of the execution of c
may influence the value of x at the end of the execution.

For example, consider the program y ::= 0 ; IF x ≤ 2 THEN y ::= x ELSE z ::= 0.

Here, the variable x depends only on itself, since it is never assigned.

The variable y clearly depends on x. It does not depend on itself, since it is initially
assigned a constant value, hence the original value is irrelevant.

The variable z depends on itself, since it may keep its value, but it also depends on x,
since the assignment to it occurs under a conditional depending on x.

In the program WHILE b DO (x ::= y ; y ::= z ) the variable x depends on both y and
z (the value of z reaches x in the second iteration of the loop).

1. Define an inductive relation influences :: name ⇒ com ⇒ name ⇒ bool which
specifies a dependency analysis.

2. Prove its soundness w.r.t. to the big-step semantics.

2


