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Exercise 10.1 Hoare Logic
In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b
in variable c.

definition MAX :: com where

Step 2 Prove these lemmas about maz:

lemma [simp]: “(a:int)<b = maz a b = b”

lemma [simp]: “—(a:int)<b = maz a b = a”

Show that MAX satisfies the following Hoare triple:
lemma “F {Xs. True} MAX {Xs. s "¢’ = maz (s "a") (s "b")}”

Step 3 Now define a program MUL that returns the product of z and y in variable z.
You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that MUL does the right thing.
lemma “ {Xs. 0 < s "y"} MUL {Xs. s "z"" = s "z"" % s "y"}”

Hints:

e You may want to use the lemma algebra_simps, containing some useful lemmas like
distributivity.



e Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; co, you first continue the proof
for co, thus instantiating the intermediate assertion, and then do the proof for ci.
However, the first premise of the Seg-rule is about ci. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated] attribute:

lemmas Seq_bwd = Seq[rotated]

lemmas hoare_rule[intro?] = Seq_bwd Assign Assign’ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.

For example, regard the following (wrong) implementation of MAX:
definition “MAX wrong = (""a’::=N 0;;”b":=N 0;;"'¢'":= N 0)”

Prove that MAX wrong also satisfies the specification for MAX:
lemma “F {Xs. True} MAX wrong {As. s "¢’ = maz (s "a’") (s "b")}”

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX:

lemma “F {As. a=s "a” A b=s "'b"'}
MAX
{As.s "¢ =mazabANa=s"a”"Nb=s"b"}”

The specification for MUL has the same problem. Fix it!

Exercise 10.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form - {P} z ::= a {Q},
where @ is some suitable postcondition. Hint: To prove this rule, use the completeness
property, and prove the rule semantically.

lemmas fwd_Assign’ = weaken_post|OF fwd_Assign)

Redo the proofs for MAX and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “F {Xs. True} MAX {Xs. s ""¢” = maz (s "a’) (s "b")}”
lemma “F {Xs. 0 < s "y""y MUL {Xs. s ""z" = s "z" x s "y"}”

\)



Homework 10.1 Fixed Points

Submission until Tuesday, January 9, 2018, 10:00am.

Prove the following fixed point theorem:

definition gfp :: “(‘a set = 'a set) = 'a set” where

“ofp f =U{P. P C fP}”

lemma
assumes “Azy. 2 Cy = fz C fy”
shows “f (gfp f) = afp [ “Na. fa=a= a C gfp [

The theorem proves two properties. The general way to do that is as follows:

lemma
assumes “P A Q7
shows P @
proof —
show P
using assms by simp

show @
using assms by simp
qed

Homework 10.2 Be Original!

Submission until Tuesday, January 9, 2018, 10:00am. (20 regular points, plus bonus
points for nice submissions)

Think up a nice formalization yourself, for example

Prove some interesting result about graph/automata/formal language theory

Formalize some results from mathematics

Find interesting modifications of IMP material and prove interesting properties
about them

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

You are welcome to discuss your plans with the tutor before starting your project.



