
Technische Universität München WS 2017/18
Institut für Informatik 09.01.2018

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Using the VCG

Use the VCG to prove correct a multiplication and a square root program:

definition MUL :: com where
“MUL =

′′z ′′::=N 0 ;;
′′c ′′::=N 0 ;;
WHILE (Less (V ′′c ′′) (V ′′y ′′)) DO (

′′z ′′::=Plus (V ′′z ′′) (V ′′x ′′);;
′′c ′′::=Plus (V ′′c ′′) (N 1 ))”

lemma “`
{λs. 0 ≤ s ′′y ′′ ∧ s=sorig}
MUL
{λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′ ∧ (∀ v . v /∈{ ′′z ′′, ′′c ′′} −→ s v = sorig v)}”

definition SQRT :: com where
“SQRT =

′′r ′′ ::= N 0 ;;
′′s ′′ ::= N 1 ;;
WHILE (Not (Less (V ′′x ′′) (V ′′s ′′))) DO (

′′r ′′ ::= Plus (V ′′r ′′) (N 1 );;
′′s ′′ ::= Plus (V ′′s ′′) (V ′′r ′′);;
′′s ′′ ::= Plus (V ′′s ′′) (V ′′r ′′);;
′′s ′′ ::= Plus (V ′′s ′′) (N 1 )

)”

lemma “`
{λs. s=sorig ∧ s ′′x ′′ ≥ 0}
SQRT
{λs. (s ′′r ′′)ˆ2 ≤ s ′′x ′′ ∧ s ′′x ′′ < (s ′′r ′′+1 )ˆ2 ∧ (∀ v . v /∈{ ′′s ′′, ′′r ′′} −→ s v = sorig v)}”

Exercise 11.2 Hoare Logic OR

Extend IMP with a new command c1 OR c2 that is a nondeterministic choice: it may
execute either c1 or c2. Add the constructor
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Or com com ("_ OR/ _" [60, 61] 60)

to datatype com in theory Com, adjust the definition of the big-step semantics in theory
Big Step, add a rule for OR to the Hoare logic in theory Hoare, and adjust the soundness
and completeness proofs in theory Hoare Sound Complete.

All these changes should be quite minimal and very local if you got the definitions right.

Homework 11.1 A Hoare Calculus with Execution Times

Submission until Tuesday, January 16, 2018, 10:00am.

In this homework, we will consider a Hoare calculus with execution times.

Hint: Use the template provided on the website.

Step 1 We first give a modified big-step semantics to account for execution times. A
judgement of the form (c, s) ⇒ n ⇓ t has the intended meaning that we can get from
state s to state t by an terminating execution of program c that takes exactly n time
steps.

inductive
big step t :: “com × state ⇒ nat ⇒ state ⇒ bool” (“ ⇒ ⇓ ” 55 )

where
Skip: “ (SKIP ,s) ⇒ Suc 0 ⇓ s” |
Assign: “ (x ::= a,s) ⇒ Suc 0 ⇓ s(x := aval a s)” |
Seq : “ [[ (c1 ,s1 ) ⇒ x ⇓ s2 ; (c2 ,s2 ) ⇒ y ⇓ s3 ; z=x+y ]] =⇒ (c1 ;;c2 , s1 ) ⇒ z ⇓ s3” |
IfTrue: “ [[ bval b s; (c1 ,s) ⇒ x ⇓ t ; y=x+1 ]] =⇒ (IF b THEN c1 ELSE c2 , s) ⇒ y ⇓ t” |
IfFalse: “ [[ ¬bval b s; (c2 ,s) ⇒ x ⇓ t ; y=x+1 ]] =⇒ (IF b THEN c1 ELSE c2 , s) ⇒ y ⇓ t” |
WhileFalse: “ [[ ¬bval b s ]] =⇒ (WHILE b DO c,s) ⇒ Suc 0 ⇓ s” |
WhileTrue:
“ [[ bval b s1 ; (c,s1 ) ⇒ x ⇓ s2 ; (WHILE b DO c, s2 ) ⇒ y ⇓ s3 ; 1+x+y=z ]]
=⇒ (WHILE b DO c, s1 ) ⇒ z ⇓ s3”

Step 2 Some theoretical background: We need extended natural numbers. These are
provided by the Extended Nat theory. We can imagine extended natural numbers as
the union of all natural numbers IN and ∞. Here are some examples to illustrate their
arithmetic behaviour:

value “3 ::enat” — 3
value “∞::enat” — ∞
value “ (3 ::enat) + 4” — 7
value “ (3 ::enat) + ∞” — ∞
value “eSuc 3” — 4
value “eSuc ∞” — ∞
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Step 3 Next, we define a Hoare calculus that also accounts for execution times. As-
sertions are still the same (of type state ⇒ bool), but we introduce new quantitative
assertions of type state ⇒ enat.

type synonym assn = “state ⇒ bool”
type synonym qassn = “state ⇒ enat”

It is thought that the result of a qassn represents a potential, where ∞ corresponds
to a False assertion in classical Hoare calculus. We can hence embed assertions into
quantitative assertions:

fun emb :: “bool ⇒ enat” (“ ↓”) where
“emb False = ∞”
| “emb True = 0”

We can define what it means for a quantitative Hoare triple to be valid:

definition hoare Qvalid :: “qassn ⇒ com ⇒ qassn ⇒ bool”
(“ |=Q {(1 )}/ ( )/ {(1 )}” 50 ) where

“ |=Q {P} c {Q} ←→ (∀ s. P s < ∞ −→ (∃ t p. ((c,s) ⇒ p ⇓ t) ∧ P s ≥ p + Q t))”

Finally, we define quantitative Hoare judgements. The idea is that both pre- and post-
condition assign an enat to a state that is then decreased as the execution progresses.
We will see an example in the next step.

inductive hoareQ :: “qassn ⇒ com ⇒ qassn ⇒ bool” (“`Q ({(1 )}/ ( )/ {(1 )})” 50 ) where

— Skipping and assignment both decrease the potential.
Skip: “`Q {λs. eSuc (P s)} SKIP {P}” |
Assign: “`Q {λs. eSuc (P (s[a/x ]))} x ::=a {P}” |

— IF THEN ELSE is a bit tricky: We decrease the potential by one before executing either
branch. Then we add 0 to the branch that gets executed and ∞ to the branch that does not
get executed. This is similar to how in classical Hoare calculus, the branch that does not get
executed gets False as precondition.
If : “ [[ `Q {λs. P s + ↓( bval b s)} c1 {Q};

`Q {λs. P s + ↓(¬ bval b s)} c2 {Q} ]]
=⇒ `Q {λs. eSuc (P s)} IF b THEN c1 ELSE c2 {Q}” |

— Sequence works about as expected.
Seq : “ [[ `Q {P1} c1 {P2}; `Q {P2} c2 {P3}]] =⇒ `Q {P1} c1;;c2 {P3}” |

— WHILE DO is a combination of conditional and sequence. The invariant is also a function
to enat.
While:
“`Q {λs. I s + ↓(bval b s)} c {λt . I t + 1}
=⇒ `Q {λs. I s + 1} WHILE b DO c {λs. I s + ↓(¬ bval b s)}” |

— The consequence rule also works like in the classic Hoare calculus.
conseq : “ [[ `Q {P} c {Q};

∧
s. P s ≤ P ′ s;

∧
s. Q ′ s ≤ Q s ]] =⇒
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`Q {P ′} c {Q ′}”

Step 4 To exercise our newly-introduce Hoare calculus with timing, we will prove a
Hoare triple for an example program that computes the sum of numbers from 1 to n.
However, we are only interested in computing the total runtime and disregard correctness
properties.

fun sum :: “int ⇒ int” where
“sum i = (if i ≤ 0 then 0 else sum (i − 1 ) + i)”

definition wsum :: com where
“wsum =

′′y ′′ ::= N 0 ;;
WHILE Less (N 0 ) (V ′′x ′′)
DO ( ′′y ′′ ::= Plus (V ′′y ′′) (V ′′x ′′);;

′′x ′′ ::= Plus (V ′′x ′′) (N (− 1 )))”

The following lemma states the the wsum program will take at most 2 + 3 ∗ n steps
to complete. Prove it!

lemma wsum: “`Q {λs. enat (2 + 3∗n) + ↓ (s ′′x ′′ = int n)} wsum {λs. 0}”
unfolding wsum def
apply(rule Seq [rotated ])
apply(rule conseq)

apply(rule While[where I=“λs. enat (3 ∗ nat (s ′′x ′′))”])

Step 5 Your task is to prove a fragment of the soundness theorem, namely for se-
quences.

theorem hoareQ sound : “`Q {P} c {Q} =⇒ |=Q {P} c {Q}”
proof(induction rule: hoareQ .induct)

case (Skip P)
— Proven already.
show ?case next
case (Seq P1 c1 P2 c2 P3)
— Prove this as a lemma: [[|=Q {P1} c1 {P2}; |=Q {P2} c2 {P3}]] =⇒ |=Q {P1} c1;; c2 {P3}
then show ?case

using Seq sound by auto
next

— For bonus points, prove the remaining cases.
qed
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