Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel

Semantics of Programming Languages

Exercise Sheet 11

Exercise 11.1 Using the VCG

Use the VCG to prove correct a multiplication and a square root program:

definition *MUL* :: *com* **where** "*MUL* =

 $\begin{array}{l} "z''::=N \ 0;; \\ "c''::=N \ 0;; \\ WHILE \ (Less \ (V \ ''c'') \ (V \ ''y'')) \ DO \ (\\ "z''::=Plus \ (V \ ''z'') \ (V \ ''x'');; \\ "c''::=Plus \ (V \ ''c'') \ (N \ 1))" \end{array}$

definition SQRT :: com **where** "SQRT =

 $\begin{array}{l} \textbf{lemma} \quad ``\vdash \\ \{\lambda s. \ s = sorig \ \land \ s \ ''x'' \ge 0 \} \\ SQRT \\ \{\lambda s. \ (s \ ''r'') \ \hat{2} \ \le \ s \ ''x'' \ \land \ s \ ''x'' < (s \ ''r''+1) \ \hat{2} \ \land \ (\forall v. \ v \notin \{''s'', ''r''\} \longrightarrow s \ v = sorig \ v) \} \end{array}$

Exercise 11.2 Hoare Logic OR

Extend IMP with a new command $c_1 OR c_2$ that is a nondeterministic choice: it may execute either c_1 or c_2 . Add the constructor

Or com com ("_ OR/ _" [60, 61] 60)

to datatype *com* in theory *Com*, adjust the definition of the big-step semantics in theory *Big_Step*, add a rule for *OR* to the Hoare logic in theory *Hoare*, and adjust the soundness and completeness proofs in theory *Hoare_Sound_Complete*.

All these changes should be quite minimal and very local if you got the definitions right.

Homework 11.1 A Hoare Calculus with Execution Times

Submission until Tuesday, January 16, 2018, 10:00am.

In this homework, we will consider a Hoare calculus with execution times. **Hint:** Use the template provided on the website.

Step 1 We first give a modified big-step semantics to account for execution times. A judgement of the form $(c, s) \Rightarrow n \Downarrow t$ has the intended meaning that we can get from state s to state t by an terminating execution of program c that takes exactly n time steps.

inductive

 $\begin{array}{l} big_step_t :: \ "com \times state \Rightarrow nat \Rightarrow state \Rightarrow bool" \ ("_ \Rightarrow _ \Downarrow _" 55) \\ \textbf{where} \\ Skip: \ "(SKIP,s) \Rightarrow Suc \ 0 \Downarrow s" \mid \\ Assign: \ "(x ::= a,s) \Rightarrow Suc \ 0 \Downarrow s(x := aval \ a \ s)" \mid \\ Seq: \ "[[\ (c1,s1) \Rightarrow x \Downarrow s2; \ (c2,s2) \Rightarrow y \Downarrow s3; z=x+y \]] \Longrightarrow (c1;;c2, s1) \Rightarrow z \Downarrow s3" \mid \\ IfTrue: \ "[[\ bval \ b \ s; \ (c1,s) \Rightarrow x \Downarrow t; y=x+1 \]] \Longrightarrow (IF \ b \ THEN \ c1 \ ELSE \ c2, s) \Rightarrow y \Downarrow t" \mid \\ IfFalse: \ "[[\ \neg bval \ b \ s; \ (c2,s) \Rightarrow x \Downarrow t; y=x+1 \]] \Longrightarrow (IF \ b \ THEN \ c1 \ ELSE \ c2, s) \Rightarrow y \Downarrow t" \mid \\ WhileFalse: \ "[[\ \neg bval \ b \ s] \ \Longrightarrow (WHILE \ b \ DO \ c, s) \Rightarrow Suc \ 0 \Downarrow s" \mid \\ WhileTrue: \\ \ "[[\ bval \ b \ s1; \ (c,s1) \Rightarrow x \Downarrow s2; \ (WHILE \ b \ DO \ c, s2) \Rightarrow y \Downarrow s3; \ 1+x+y=z \]] \\ \Longrightarrow (WHILE \ b \ DO \ c, s1) \Rightarrow z \Downarrow s3" \end{array}$

Step 2 Some theoretical background: We need *extended natural numbers*. These are provided by the *Extended_Nat* theory. We can imagine extended natural numbers as the union of all natural numbers \mathbb{N} and ∞ . Here are some examples to illustrate their arithmetic behaviour:

value "3::enat" — 3 value " ∞ ::enat" — ∞ value "(3::enat) + 4" — 7 value "(3::enat) + ∞ " — ∞ value "eSuc 3" — 4 value "eSuc ∞ " — ∞ **Step 3** Next, we define a Hoare calculus that also accounts for execution times. Assertions are still the same (of type *state* \Rightarrow *bool*), but we introduce new *quantitative* assertions of type *state* \Rightarrow *enat*.

type_synonym $assn = "state \Rightarrow bool"$ type_synonym $qassn = "state \Rightarrow enat"$

It is thought that the result of a *qassn* represents a *potential*, where ∞ corresponds to a *False* assertion in classical Hoare calculus. We can hence embed assertions into quantitative assertions:

fun emb :: "bool \Rightarrow enat" (" \downarrow ") where "emb False = ∞ " | "emb True = 0"

We can define what it means for a quantitative Hoare triple to be valid:

 $\begin{array}{l} \textbf{definition } hoare_Qvalid :: ``qassn \Rightarrow com \Rightarrow qassn \Rightarrow bool" \\ (``\models_Q \{(1_{-})\}/ (_)/ \{(1_{-})\}" 50) \textbf{ where} \\ ``\models_Q \{P\} c \{Q\} \longleftrightarrow (\forall s. P s < \infty \longrightarrow (\exists t p. ((c,s) \Rightarrow p \Downarrow t) \land P s \ge p + Q t))" \end{array}$

Finally, we define quantitative Hoare judgements. The idea is that both pre- and postcondition assign an *enat* to a state that is then decreased as the execution progresses. We will see an example in the next step.

inductive hoare $Q :: "qassn \Rightarrow com \Rightarrow qassn \Rightarrow bool" ("\vdash_Q (\{(1_-)\}/(_-)/\{(1_-)\})" 50)$ where

— Skipping and assignment both decrease the potential. Skip: " $\vdash_Q \{\lambda s. eSuc (P s)\} SKIP \{P\}$ " | Assign: " $\vdash_Q \{\lambda s. eSuc (P (s[a/x]))\} x::=a \{P\}$ " |

— $IF _ THEN _ ELSE _$ is a bit tricky: We decrease the potential by one before executing either branch. Then we add 0 to the branch that gets executed and ∞ to the branch that does not get executed. This is similar to how in classical Hoare calculus, the branch that does not get executed gets *False* as precondition.

 $\begin{array}{l} If: \ ``\llbracket \vdash_Q \{\lambda s. \ P \ s \ + \ \downarrow (bval \ b \ s)\} \ c_1 \ \{Q\}; \\ \vdash_Q \{\lambda s. \ P \ s \ + \ \downarrow (\neg \ bval \ b \ s)\} \ c_2 \ \{Q\} \ \rrbracket \\ \Longrightarrow \vdash_Q \{\lambda s. \ eSuc \ (P \ s)\} \ IF \ b \ THEN \ c_1 \ ELSE \ c_2 \ \{Q\}" \ | \end{array}$

— Sequence works about as expected. Seq: " $\llbracket \vdash_Q \{P_1\} c_1 \{P_2\}; \vdash_Q \{P_2\} c_2 \{P_3\} \rrbracket \Longrightarrow \vdash_Q \{P_1\} c_1;;c_2 \{P_3\}" \mid Q = P_1$

— WHILE _ DO _ is a combination of conditional and sequence. The invariant is also a function to enat. While:

— The consequence rule also works like in the classic Hoare calculus. conseq: " $[\![\vdash_Q \{P\} \ c \ \{Q\}; \ \land s. \ P \ s \le P' \ s; \ \land s. \ Q' \ s \le Q \ s \]\!] \Longrightarrow$

$$\vdash_Q \{P'\} \ c \ \{Q'\}"$$

Step 4 To exercise our newly-introduce Hoare calculus with timing, we will prove a Hoare triple for an example program that computes the sum of numbers from 1 to n. However, we are only interested in computing the total runtime and disregard correctness properties.

fun sum :: "int \Rightarrow int" where "sum $i = (if \ i \le 0 \ then \ 0 \ else \ sum \ (i - 1) + i)$ "

definition wsum :: com where

"wsum = "y" ::= N 0;; WHILE Less (N 0) (V "x") DO ("y" ::= Plus (V "y") (V "x");; "x" ::= Plus (V "x") (N (- 1)))"

The following lemma states the the *wsum* program will take at most 2 + 3 * n steps to complete. Prove it!

lemma wsum: " $\vdash_Q \{\lambda s. enat (2 + 3*n) + \downarrow (s "x" = int n)\}$ wsum $\{\lambda s. 0\}$ " unfolding wsum_def apply(rule Seq[rotated]) apply(rule conseq) apply(rule While[where $I = "\lambda s. enat (3 * nat (s "x"))"]$)

Step 5 Your task is to prove a fragment of the soundness theorem, namely for sequences.

theorem hoareQ_sound: " $\vdash_Q \{P\} c \{Q\} \Longrightarrow \models_Q \{P\} c \{Q\}$ " proof(induction rule: hoareQ.induct) case (Skip P) — Proven already. show ?case next case (Seq P₁ c₁ P₂ c₂ P₃) — Prove this as a lemma: $\llbracket\models_Q \{P_1\} c_1 \{P_2\}; \models_Q \{P_2\} c_2 \{P_3\} \rrbracket \Longrightarrow \models_Q \{P_1\} c_1;; c_2 \{P_3\}$ then show ?case using Seq_sound by auto next — For bonus points, prove the remaining cases. ged