
Technische Universität München WS 2017/18
Institut für Informatik 30.01.2018

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 14

Exercise 14.1 Inverse Analysis

Consider a simple sign analysis based on this abstract domain:

datatype sign = None | Neg | Pos0 | Any

fun γ :: “sign ⇒ val set” where
“ γ None = {}” |
“ γ Neg = {i . i < 0}” |
“ γ Pos0 = {i . i ≥ 0}” |
“ γ Any = UNIV”

Define inverse analyses for “+” and “<” and prove the required correctness properties:

fun inv plus ′ :: “sign ⇒ sign ⇒ sign ⇒ sign ∗ sign”
lemma
“ [[inv plus ′ a a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1 ; i2 ∈ γ a2 ; i1+i2 ∈ γ a]]
=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′ ”

fun inv less ′ :: “bool ⇒ sign ⇒ sign ⇒ sign ∗ sign”
lemma
“ [[inv less ′ bv a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1 ; i2 ∈ γ a2 ; (i1<i2) = bv]]
=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′”

Exercise 14.2 Command Equivalence

Recall the notion of command equivalence:

c1 ∼ c2 ≡ (∀ s t . (c1, s) ⇒ t ←→ (c2, s) ⇒ t)

1. Define a function is SKIP :: com ⇒ bool which holds on commands equivalent to
SKIP. The function is SKIP should be as precise as possible, but it should not
analyse arithmetic or boolean expressions.

Prove: is SKIP c =⇒ c ∼ SKIP

1

2. The following command equivalence is wrong. Give a counterexample in the form
of concrete instances for b1, b2, c1, c2, and a state s.

WHILE b1 DO IF b2 THEN c1 ELSE c2
∼ IF b2 THEN (WHILE b1 DO c1) ELSE (WHILE b1 DO c2)

(∗)

3. Define a condition P on b1, b2, c1, and c2 such that the previous statement (∗)
holds, i.e. P b1 b2 c1 c2 =⇒ (∗)
Your condition should be as precise as possible, but only using:

• lvars :: com ⇒ vname set (all left variables, i.e. written variables),

• rvars :: com ⇒ vname set (all right variables, i.e. all read variables),

• vars :: bexp ⇒ vname set (all variables in a condition), and

• boolean connectives and set operations

General homework instructions

The first homework is pen & paper (or keyboard & text file). You have the choice of
uploading a text file or a PDF scan of hand-written notes to the submission system.
Physical paper submissions are not accepted.

Homework 14.1 Palindromes

Submission until Tuesday, February 6, 2018, 10:00am.

A palindrome is a word which reads the same in forward and backward direction. We
introduce an inductive predicate palindrome of type ′a list ⇒ bool :

inductive palindrome where
“palindrome []”
| “palindrome [x]”
| “palindrome xs =⇒ palindrome ([x] @ xs @ [x])”

1. Show palindrome xs =⇒ rev xs = xs.

2. Show rev xs = xs =⇒ palindrome xs.

You are allowed to use rule induction, structural induction, and the following induction
rule:

P [] ∀ x . P [x] ∀ x y xs. P xs −→ P ([x] @ xs @ [y])

∀ xs. P xs
IND

2

Homework 14.2 Assertions

Submission until Tuesday, February 6, 2018, 10:00am.

We extend IMP with an assertion command ASSERT bexp. Intuitively, the execution
gets stuck if the asserted expression evaluates to false, otherwise ASSERT bexp behaves
like SKIP. Add the appropriate rule to the big-step semantics. Also add a rule to the
Hoare calculus and adapt the proofs of correctness and completeness.

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| Seq com com (“ ;;/ ” [60 , 61] 60)
| If bexp com com (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61)
| While bexp com (“ (WHILE / DO)” [0 , 61] 61)
| ASSERT bexp

3

