
Technische Universität München WS 2019/20
Fakultät für Informatik 16.12.2017

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 09

Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b
in variable c.

definition Max :: com where

Step 2 Prove these lemmas about max :

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that ex09 .Max satisfies the following Hoare triple:

lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra simps, containing some useful lemmas like
distributivity.
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• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated ] attribute:

lemmas Seq bwd = Seq [rotated ]

lemmas hoare rule[intro? ] = Seq bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.

For example, regard the following (wrong) implementation of ex09 .Max :

definition “MAX wrong = ( ′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::= N 0 )”

Prove that MAX wrong also satisfies the specification for ex09 .Max :

lemma “` {λs. True} MAX wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that ex09 .Max computes the maximum of the values
of a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for ex09 .Max :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
Max
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 9.2 Forward Assignment Rule

Think up and prove correct a forward assignment rule, i.e., a rule of the form ` {P} x
::= a {Q}, where Q is some suitable postcondition. Hint: To prove this rule, use the
completeness property, and prove the rule semantically.

lemmas fwd Assign ′ = weaken post [OF fwd Assign]

Redo the proofs for ex09 .Max and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”
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Homework 9.1 Hoare Logic with Continue

Submission until Monday, January 13, 10:00am. (5 Points)

We again consider the extension of IMP with CONTINUE.

Your task is to adopt the rules of the Hoare calculus for partial correctness to this
language and to prove the calculus sound and complete.

In addition to the previous predicate for validity |= {P}c{Q}, we will use a notion of
validity |={I } {P}c{Q} that tracks the invariant of the surrounding While-loop, and a
corresponding Hoare calculus `{I } {P} c {Q}:
definition
hoare valid :: “assn ⇒ com ⇒ assn ⇒ bool” (“ |= {(1 )}/ ( )/ {(1 )}” 50 ) where
“ |= {P}c{Q} = (∀ s f t . P s ∧ (c,s) ⇒ (f , t) −→ Q t)”

definition
hoare validc :: “assn ⇒ assn ⇒ com ⇒ assn ⇒ bool” (“ |=c{(1 )}/ {(1 )}/ ( )/ {(1 )}” 50 )
where
“ |=c{I } {P}c{Q} = (∀ s f t . P s ∧ (c,s) ⇒ (f , t) −→ (if f then I t else Q t))”

inductive
hoare :: “assn ⇒ assn ⇒ com ⇒ assn ⇒ bool” (“`{(1 )}/ ({(1 )}/ ( )/ {(1 )})” 50 )

where
Skip: “`{I } {P} SKIP {P}” |
Assign: “`{I } {λs. P(s[a/x ])} x ::=a {P}” |
Seq : “ [[ `{I } {P} c1 {Q}; `{I } {Q} c2 {R} ]]

=⇒ `{I } {P} c1;;c2 {R}” |
If : “ [[ `{I } {λs. P s ∧ bval b s} c1 {Q}; `{I } {λs. P s ∧ ¬ bval b s} c2 {Q} ]]

=⇒ `{I } {P} IF b THEN c1 ELSE c2 {Q}” |
conseq : “ [[ ∀ s. P ′ s −→ P s; `{I } {P} c {Q}; ∀ s. Q s −→ Q ′ s ]]

=⇒ `{I } {P ′} c {Q ′}” |
— Your cases here:

Complete the definition of the Hoare calculus!

Prove soundness of the calculus:

theorem hoare sound : “`{I } {P}c{Q} =⇒ |=c{I } {P}c{Q}”

In analogy to |=c{I } {P}c{Q}, define the the weakest precondition wp c I Q of program
c:

definition wp :: “com ⇒ assn ⇒ assn ⇒ assn” where

Prove the following theorem, which establishes completeness of the calculus:

theorem wp is pre: “`{I } {wp c I Q} c {Q}”

Finally show that the calculus is sound and complete:

theorem hoare sound complete: “`{Q} {P}c{Q} ←→ |= {P}c{Q}”
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Hints: Use the theory HOL−IMP .Hoare Sound Complete as a template for your proofs.
For soundness, you will need a lemma about the state of the flag after executing a while-
loop. For completeness, it may be easier to not attempt to prove a variant of wp While If
directly, but rather to figure out what variants of wp While True and wp While False
are needed, and then to prove them directly.

Homework 9.2 Be Original!

Submission until Monday, January 13, 2019, 10:00am. (15 regular points, plus bonus
points for nice submissions)

Think up a nice formalization yourself, for example

• Prove some interesting result about algorithms/graphs/automata/formal language
theory

• Formalize some results from mathematics

• Find interesting modifications of IMP material and prove interesting properties
about them

• ...

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

You are welcome to discuss your plans with the tutor (via e-mail) before starting your
project. This is, however, not a necessity by any means.
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