Final Exam

Semantics
14.02.2020

First name:

Last name: \qquad

Student-Id (Matrikelnummer): \qquad

Signature:

1. You may only use a pen/pencil, eraser, and one A4 sheet of notes to solve the exam. Switch off your mobile phones!
2. Please use the empty pages to answer the questions, preferably. If this space is not sufficient, you may use the extra sheets that have been handed out. Please state it clearly, below the question, when doing so.
3. You have 120 minutes to solve the exam.
4. Please put your student ID and ID-card or driver's license on the table until we have checked it.
5. Please do not leave the room in the last 15 minutes of the exam.

Proof Guidelines: We expect detailed, rigorous, mathematical proofs - but we do not ask you to write Isabelle proof scripts! You are welcome to use standard mathematical notation; you do not need to follow Isabelle syntax. Proof steps should be explained in ordinary language like a typical mathematical proof.

Major proof steps, especially inductions, need to be stated explicitly. For each case of a proof by induction, you must list the inductive hypotheses assumed (if any), and the goal to be proved.

Minor proof steps (corresponding to by simp, by blast etc) need not be justified if you think they are obvious, but you should say which facts they follow from. You should be explicit whenever you use a function definition or an introduction rule for an inductive predicate - especially for functions and predicates that are specific to an exam question. (You need not reference individual lemmas for standard concepts like integer arithmetic, however, and in any case we do not ask you to recall lemma names from any Isabelle theories.)

1 Induction

Question 1 Consider the following inductive definition:

```
inductive M :: "nat => bool" where
"M (n+2) ==> M n" |
"M n ==> M (n+5) ==> M (n+1)"
```

a) Write down the Isabelle proof state after the following two commands:

```
lemma "M a ==> a = 7"
apply(induction a rule: M.induct)
```

b) Is the formula M a ==> False provable? Give a short justification of your answer.

Question 2 Consider the following function definitions:

```
fun f :: "nat => nat" where
"f 0 = 0" |
"f (Suc 0) = 1" |
"f (Suc(Suc n)) = f n + f (Suc n)"
fun g :: "nat => nat => nat => nat" where
"g a b 0 = b" |
"g a b (Suc n) = g b (a+b) n"
```

Find terms ? 1 and ? 2 sucht that the equation

```
g a b n = f n * ?1 + f (Suc n) * ?2
```

becomes true. Give a proof of the resulting equation.

1.1 Solution

Question 1

lemma $M a \Longrightarrow a=7$
apply (induction a rule: M.induct)

1. $\wedge n . M(n+2) \Longrightarrow n+2=7 \Longrightarrow n=7$
2. $\wedge n . M n \Longrightarrow n=7 \Longrightarrow M(n+5) \Longrightarrow n+5=7 \Longrightarrow n+1=7$
oops
We define an empty predicate, thus the induction rule for M allows us to prove the theorem.
lemma $M a \Longrightarrow$ False
by (erule M.induct)
Question 2 Instantiation: ? $1=\mathrm{a}$ and $? 2=\mathrm{b}$

lemma

$g a b n=f n * a+f($ Suc $n) * b$
proof (induction n arbitrary: $a b$)

- Base case
fix $a b$ show $g a b 0=f 0 * a+f(\operatorname{Suc} 0) * b$
by auto
next
- Induction step
fix $n a b$
assume $I H: \bigwedge a b . g a b n=f n * a+f($ Suc $n) * b$
have $g a b($ Suc $n)=g b(a+b) n$
by (rule g.simps)
also have $\ldots=f n * b+f($ Suc $n) *(a+b)$
by (rule IH)
also have $\ldots=f($ Suc $n) * a+(f n+f($ Suc $n)) * b$
by algebra
also have $\ldots=f($ Suc $n) * a+f($ Suc $($ Suc $n)) * b$
unfolding f.simps ..
finally show $g a b($ Suc $n)=f($ Suc $n) * a+f($ Suc $($ Suc $n)) * b$.
qed

2 While-Loops

Consider the the big-step semantics of Imp. We will denote the set of variables of a command c by vars c.

Question 1 Show:

$(W H I L E b D O c, s) \Rightarrow t \Longrightarrow \operatorname{vars} c \cap \operatorname{vars} b=\{ \} \Longrightarrow \neg \operatorname{val} b s$
Hint: You may use the following fact:

$$
\begin{equation*}
\text { vars } c \cap \text { vars } b=\{ \} \Longrightarrow(c, s) \Rightarrow t \Longrightarrow \text { bval } b s \longleftrightarrow \text { bval } b t \tag{1}
\end{equation*}
$$

Question 2 Define a function no :: com \Rightarrow bool such that no c holds if and only if c contains no while loops. Show:

$$
\text { no } c \Longrightarrow \forall s . \exists t .(c, s) \Rightarrow t
$$

Hint: You may skip the cases for $S K I P$ and assignment when performing an induction.

2．1 Solution

lemma aux：
assumes 1：vars $c \cap$ vars $b=\{ \}$ and 2：$(c, s) \Rightarrow t$
shows bval $b s \longleftrightarrow$ bval $b t$

```
lemma ex1: (WHILE bDO \(c, s) \Rightarrow t \Longrightarrow\) vars \(c \cap\) vars \(b=\{ \} \Longrightarrow \neg\) bval \(b s\)
proof (induction WHILE b DO cstrule: big_step_induct)
    case WhileFalse
    thus ?case by simp
next
    case (WhileTrue s1 s2 s3)
    from 〈bval \(b\) s1〉〈vars \(c \cap\) vars \(b=\{ \}\rangle\langle(c, s 1) \Rightarrow s 2\rangle\) aux have bval \(b\) s2 by auto
    with WhileTrue(5) 〈vars \(c \cap\) vars \(b=\{ \}\rangle\) show ?case by auto
qed
```

fun $n o::$ com \Rightarrow bool where
no SKIP \longleftrightarrow True
\mid no $(x::=a) \longleftrightarrow$ True
\mid no $(c 1 ; ; c 2) \longleftrightarrow$ no $c 1 \wedge$ no $c 2$

\mid no $($ WHILE $b D O c) \longleftrightarrow$ False
lemma ex2: no $c \Longrightarrow \forall s . \exists t .(c, s) \Rightarrow t$
proof(induction c)
case (Seq c1c2)
show ?case proof safe
fix s
have c1: no c1 and c2: no c2 using Seq.prems by simp_all
from $c 1$ obtain $t 1$ where $(c 1, s) \Rightarrow t 1$ using Seq.IH(1) by auto
moreover from $c \mathcal{2}$ obtain t where $(c 2, t 1) \Rightarrow t$ using $S e q . I H(2)$ by auto
ultimately have $(c 1 ; ; c 2, s) \Rightarrow t$ by (auto intro: big_step.intros)
thus $\exists t .(c 1 ; ; c 2, s) \Rightarrow t$ by blast
qed
next
case (If bc1c2)
show ?case proof safe
fix s
have c1: no c1 and c2: no c2 using If.prems by simp_all
show $\exists t$. (IF bTHEN c1 ELSE c2, s) $\Rightarrow t$
proof (cases bval bs)
case True thus ?thesis using If.IH(1)[OF c1] by auto
next
case False thus ?thesis using If.IH(2)[OF c2] by auto
qed
qed
qed auto

3 Hoare-Logic

We replace the assignment in IMP by a command $R E L R$ that performs an arbitrary state transition according to relation $R::$ (state \times state) set.
In the big-step semantics, we remove the assign-rule, and add the following rule:
Rel: $\left(s, s^{\prime}\right) \in R \Longrightarrow(R E L R, s) \Rightarrow s^{\prime}$

Questions

1. Is the semantics deterministic, i.e., does the following hold (proof or counterexample):

$$
(c, s) \Rightarrow t \Longrightarrow(c, s) \Rightarrow t^{\prime} \Longrightarrow t=t^{\prime}
$$

2. What does the weakest precondition $w p(R E L R) Q$ look like?
3. Specify a Hoare-rule for $R E L$.
4. Prove: $\vdash\{w p(R E L R) Q\}$ REL $R\{Q\}$.

Hints

- Question 2: Recall the definition of the weakest precondition:
$w p c Q=(\lambda s . \forall t .(c, s) \Rightarrow t \longrightarrow Q t)$
Now we want an equation that shows how to expand $w p$ syntactically, i.e., the right hand side should not contain the Big/Small-step semantics. You need not prove your equation here.
- Question 4: The main lemma in the completeness proof of Hoare logic is $\vdash\{w p c Q\} c\{Q\}$. Here you have to prove the case for the $R E L$-command. Use your equation for $w p$ from Question 2 here!

3.1 Solution

1. No! We have, e.g., $\forall s^{\prime}$. (REL UNIV,s) $\Rightarrow s^{\prime}$, and there exists more than one state s^{\prime}.
2. $w p(R E L R) Q=\lambda s . \forall s^{\prime} .\left(s, s^{\prime}\right) \in R \longrightarrow Q s^{\prime}$
3. $\vdash\left\{\lambda s . \forall s^{\prime} .\left(s, s^{\prime}\right) \in R \longrightarrow Q s^{\prime}\right\} R E L R\{Q\}$
4. Using 2), we have to prove: $\vdash\left\{\lambda s . \forall s^{\prime} .\left(s, s^{\prime}\right) \in R \longrightarrow Q s^{\prime}\right\} R E L R\{Q\}$ Which matches exactly the Hoare-rule for $R E L$.

4 Abstract Interpretation

IMP is extended by adding a multiplication operator, and restricted to only compute with natural numbers:
datatype aexp $=N$ nat $\mid V$ vname \mid Plus aexp aexp \mid Mul aexp aexp
Design a static analysis that tries to determine a lower bound on the number of 2 s in the prime factorization of a value.
Abstract values are just natural numbers:
datatype twos $=$ N2s nat
The concretization function is: $\gamma(N 2 s k)=\left\{2^{k} * x \mid x \in \mathbb{N}\right\}$

1. Define the ordering \leq on the abstract domain.
2. Define the join-operator \sqcup on the abstract domain.
3. Define the functions $n u m^{\prime}, p l u s^{\prime}$ and $m u l^{\prime}$ on the abstract domain.
4. Run the analysis on the following program:
```
x := 4; {A1}
x := x*x + 8; {A2}
IF b THEN
    {A3} }\textrm{x}=\textrm{x}+2{A4
ELSE
    {A5} }x=x*10 {A6
{A7}
```

We have already added the annotations for you. Iterate the step function on this program until a fixed point is reached, and document the result of each iteration in the following table. Note: You only need to specify the abstract value of variable x in each cell.

	0	1	2	3	4	5	6	7	8	9	\ldots
$A 1$	\perp										
$A 2$	\perp										
$A 3$	\perp										
$A 4$	\perp										
$A 5$	\perp										
$A 6$	\perp										
$A 7$	\perp										

4.1 Solution

1. N2s $j \leq$ N2s k iff $k \leq j$
2. NRS $i \sqcup N$ NS $j=\min i j$
3. $n u m^{\prime} n=\operatorname{Max}\left\{k \mid \exists m\right.$. $\left.n=\left(2::^{\prime} a\right)^{k} * m\right\}$
$\operatorname{plus}^{\prime}($ N2s $i)($ N2s $j)=\min i j$
mul $^{\prime}($ N2s $i)($ N2s $j)=i+j$

	0	1	2	3	4	5	6	7	8	9	\ldots
$A 1$	\perp	N2s 2									
$A 2$	\perp		N2s 3								
$A 3$	\perp			N2s 3							
$A 4$	\perp				N2s 1						
$A 5$	\perp			N2s 3							
$A 6$	\perp				N2s 4						
$A 7$	\perp					N2s 1					

5 Post-fixed Points

Recall that a complete lattice is a type ' a with a partial order \leq such that every set X :: 'a set has a greatest lower bound, denoted ΠX. This means that $\forall x \in X . \Pi X \leq$ and $\forall y .((\forall x \in X . y \leq x) \longrightarrow y \leq \Pi X)$.
Prove that for a complete lattice and a monotone function $f::{ }^{\prime} a \Rightarrow^{\prime} a$ on it, the set of post-fixed points of f is closed under Π :
4. $\forall X$:: 'a set. $((\forall x \in X . f x \leq x) \longrightarrow f(\Pi X) \leq \sqcap X)$

5.1 Solution

lemma
assumes 1: mono f
and 2: $\forall X::$ ('a::complete_lattice) set. $(\forall x \in X . f x \leq x)$
shows $f(\operatorname{Inf} X) \leq \operatorname{Inf} X$
proof (rule Inf_greatest)
fix x assume $x: x \in X$
have Inf $X \leq x$ using Inf_lower [OF $x]$.
hence $f(\operatorname{Inf} X) \leq f x$ using 1 unfolding mono_def by auto
also have $\ldots \leq x$ using $2 x$ by auto
finally show $f($ Inf $X) \leq x$.
qed

