
1

Final Exam
Semantics

14.02.2020

First name:

Last name:

Student-Id (Matrikelnummer):

Signature:

1. You may only use a pen/pencil, eraser, and one A4 sheet of notes to solve the exam.
Switch off your mobile phones!

2. Please use the empty pages to answer the questions, preferably. If this space is not
sufficient, you may use the extra sheets that have been handed out. Please state it
clearly, below the question, when doing so.

3. You have 120 minutes to solve the exam.

4. Please put your student ID and ID-card or driver’s license on the table until we have
checked it.

5. Please do not leave the room in the last 15 minutes of the exam.
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Proof Guidelines: We expect detailed, rigorous, mathematical proofs — but we do
not ask you to write Isabelle proof scripts! You are welcome to use standard mathematical
notation; you do not need to follow Isabelle syntax. Proof steps should be explained in
ordinary language like a typical mathematical proof.

Major proof steps, especially inductions, need to be stated explicitly. For each case of a
proof by induction, you must list the inductive hypotheses assumed (if any), and the
goal to be proved.

Minor proof steps (corresponding to by simp, by blast etc) need not be justified if you
think they are obvious, but you should say which facts they follow from. You should be
explicit whenever you use a function definition or an introduction rule for an inductive
predicate — especially for functions and predicates that are specific to an exam question.
(You need not reference individual lemmas for standard concepts like integer arithmetic,
however, and in any case we do not ask you to recall lemma names from any Isabelle
theories.)
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1 Induction

Question 1 Consider the following inductive definition:

inductive M :: "nat => bool" where

"M (n+2) ==> M n" |

"M n ==> M (n+5) ==> M (n+1)"

a) Write down the Isabelle proof state after the following two commands:

lemma "M a ==> a = 7"

apply(induction a rule: M.induct)

b) Is the formula M a ==> False provable? Give a short justification of your answer.

Question 2 Consider the following function definitions:

fun f :: "nat => nat" where

"f 0 = 0" |

"f (Suc 0) = 1" |

"f (Suc(Suc n)) = f n + f (Suc n)"

fun g :: "nat => nat => nat => nat" where

"g a b 0 = b" |

"g a b (Suc n) = g b (a+b) n"

Find terms ?1 and ?2 sucht that the equation

g a b n = f n * ?1 + f (Suc n) * ?2

becomes true. Give a proof of the resulting equation.
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1.1 Solution

Question 1
lemma M a =⇒ a = 7

apply (induction a rule: M .induct)

1 .
∧
n. M (n + 2 ) =⇒ n + 2 = 7 =⇒ n = 7

2 .
∧
n. M n =⇒ n = 7 =⇒ M (n + 5 ) =⇒ n + 5 = 7 =⇒ n + 1 = 7

oops

We define an empty predicate, thus the induction rule for M allows us to prove the
theorem.

lemma M a =⇒ False
by (erule M .induct)

Question 2 Instantiation: ?1 = a and ?2 = b

lemma
g a b n = f n ∗ a + f (Suc n) ∗ b

proof (induction n arbitrary : a b)
— Base case
fix a b show g a b 0 = f 0 ∗ a + f (Suc 0 ) ∗ b

by auto
next

— Induction step
fix n a b
assume IH :

∧
a b. g a b n = f n ∗ a + f (Suc n) ∗ b

have g a b (Suc n) = g b (a + b) n
by (rule g .simps)

also have . . . = f n ∗ b + f (Suc n) ∗ (a + b)
by (rule IH )

also have . . . = f (Suc n) ∗ a + (f n + f (Suc n)) ∗ b
by algebra

also have . . . = f (Suc n) ∗ a + f (Suc (Suc n)) ∗ b
unfolding f .simps ..

finally show g a b (Suc n) = f (Suc n) ∗ a + f (Suc (Suc n)) ∗ b .
qed
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2 While-Loops

Consider the the big-step semantics of Imp. We will denote the set of variables of a
command c by vars c.

Question 1 Show:

(WHILE b DO c, s)⇒ t =⇒ vars c ∩ vars b = {} =⇒ ¬ bval b s

Hint : You may use the following fact:

vars c ∩ vars b = {} =⇒ (c, s)⇒ t =⇒ bval b s←→ bval b t (1)

Question 2 Define a function no :: com ⇒ bool such that no c holds if and only if
c contains no while loops. Show:

no c =⇒ ∀s. ∃t. (c, s)⇒ t

Hint: You may skip the cases for SKIP and assignment when performing an induction.
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2.1 Solution

lemma aux :
assumes 1 : vars c ∩ vars b = {} and 2 : (c, s) ⇒ t
shows bval b s ←→ bval b t

lemma ex1 : (WHILE b DO c, s) ⇒ t =⇒ vars c ∩ vars b = {} =⇒ ¬ bval b s
proof (induction WHILE b DO c s t rule: big step induct)

case WhileFalse
thus ?case by simp

next
case (WhileTrue s1 s2 s3 )
from 〈bval b s1 〉 〈vars c ∩ vars b = {}〉 〈(c, s1 ) ⇒ s2 〉 aux have bval b s2 by auto
with WhileTrue(5 ) 〈vars c ∩ vars b = {}〉 show ?case by auto

qed

fun no :: com ⇒ bool where
no SKIP ←→ True
|no (x ::= a) ←→ True
|no (c1 ;; c2 ) ←→ no c1 ∧ no c2
|no (IF b THEN c1 ELSE c2 ) ←→ no c1 ∧ no c2
|no (WHILE b DO c) ←→ False

lemma ex2 : no c =⇒ ∀ s. ∃ t . (c, s) ⇒ t
proof(induction c)

case (Seq c1 c2 )
show ?case proof safe

fix s
have c1 : no c1 and c2 : no c2 using Seq .prems by simp all
from c1 obtain t1 where (c1 ,s) ⇒ t1 using Seq .IH (1 ) by auto
moreover from c2 obtain t where (c2 ,t1 ) ⇒ t using Seq .IH (2 ) by auto
ultimately have (c1 ;; c2 , s) ⇒ t by (auto intro: big step.intros)
thus ∃ t . (c1 ;; c2 , s) ⇒ t by blast

qed
next

case (If b c1 c2 )
show ?case proof safe

fix s
have c1 : no c1 and c2 : no c2 using If .prems by simp all
show ∃ t . (IF b THEN c1 ELSE c2 , s) ⇒ t
proof(cases bval b s)

case True thus ?thesis using If .IH (1 )[OF c1 ] by auto
next

case False thus ?thesis using If .IH (2 )[OF c2 ] by auto
qed

qed
qed auto
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3 Hoare-Logic

We replace the assignment in IMP by a command REL R that performs an arbitrary
state transition according to relation R :: (state × state) set.

In the big-step semantics, we remove the assign-rule, and add the following rule:

Rel : (s,s ′) ∈ R =⇒ (REL R,s) ⇒ s ′

Questions

1. Is the semantics deterministic, i.e., does the following hold (proof or counterexam-
ple):

(c,s) ⇒ t =⇒ (c,s) ⇒ t ′ =⇒ t=t ′

2. What does the weakest precondition wp (REL R) Q look like?

3. Specify a Hoare-rule for REL.

4. Prove: ` {wp (REL R) Q} REL R {Q}.

Hints

• Question 2: Recall the definition of the weakest precondition:

wp c Q = (λs. ∀ t . (c,s) ⇒ t −→ Q t)

Now we want an equation that shows how to expand wp syntactically, i.e., the
right hand side should not contain the Big/Small-step semantics. You need not
prove your equation here.

• Question 4: The main lemma in the completeness proof of Hoare logic is
` {wp c Q} c {Q}. Here you have to prove the case for the REL-command. Use
your equation for wp from Question 2 here!
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3.1 Solution

1. No! We have, e.g., ∀ s ′. (REL UNIV ,s) ⇒ s ′, and there exists more than one state
s ′.

2. wp (REL R) Q = λs. ∀ s ′. (s,s ′)∈R −→ Q s ′

3. ` {λs. ∀ s ′. (s,s ′)∈R −→ Q s ′} REL R {Q}

4. Using 2), we have to prove: ` {λs. ∀ s ′. (s,s ′)∈R −→ Q s ′} REL R {Q} Which
matches exactly the Hoare-rule for REL.
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4 Abstract Interpretation

IMP is extended by adding a multiplication operator, and restricted to only compute
with natural numbers:

datatype aexp = N nat | V vname | Plus aexp aexp | Mul aexp aexp

Design a static analysis that tries to determine a lower bound on the number of 2s in
the prime factorization of a value.

Abstract values are just natural numbers:

datatype twos = N2s nat

The concretization function is: γ (N2s k) = {2 k ∗ x | x ∈ N}

1. Define the ordering ≤ on the abstract domain.

2. Define the join-operator t on the abstract domain.

3. Define the functions num ′, plus ′ and mul ′ on the abstract domain.

4. Run the analysis on the following program:

x := 4; {A1}

x := x*x + 8; {A2}

IF b THEN

{A3} x=x+2 {A4}

ELSE

{A5} x=x*10 {A6}

{A7}

We have already added the annotations for you. Iterate the step function on this
program until a fixed point is reached, and document the result of each iteration in
the following table. Note: You only need to specify the abstract value of variable
x in each cell.

0 1 2 3 4 5 6 7 8 9 . . .

A1 ⊥
A2 ⊥
A3 ⊥
A4 ⊥
A5 ⊥
A6 ⊥
A7 ⊥
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4.1 Solution

1. N2s j ≤ N2s k iff k≤j

2. N2s i t N2s j = min i j

3. num ′ n = Max {k | ∃m. n = (2 :: ′a)k ∗ m}

plus ′ (N2s i) (N2s j ) = min i j

mul ′ (N2s i) (N2s j ) = i + j

0 1 2 3 4 5 6 7 8 9 . . .

A1 ⊥ N2s 2

A2 ⊥ N2s 3

A3 ⊥ N2s 3

A4 ⊥ N2s 1

A5 ⊥ N2s 3

A6 ⊥ N2s 4

A7 ⊥ N2s 1
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5 Post-fixed Points

Recall that a complete lattice is a type ′a with a partial order ≤ such that every set X ::
′a set has a greatest lower bound, denoted

d
X. This means that ∀ x ∈ X .

d
X ≤ and

∀ y . ((∀ x ∈ X . y ≤ x ) −→ y ≤
d
X ).

Prove that for a complete lattice and a monotone function f :: ′a ⇒ ′a on it, the set of
post-fixed points of f is closed under

d
:

4. ∀X :: ′a set . ((∀ x ∈ X . f x ≤ x ) −→ f (
d
X ) ≤

d
X )
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5.1 Solution

lemma
assumes 1 : mono f

and 2 : ∀ X :: ( ′a::complete lattice) set . (∀ x ∈ X . f x ≤ x )
shows f (Inf X ) ≤ Inf X

proof (rule Inf greatest)
fix x assume x : x ∈ X
have Inf X ≤ x using Inf lower [OF x ] .
hence f (Inf X ) ≤ f x using 1 unfolding mono def by auto
also have ... ≤ x using 2 x by auto
finally show f (Inf X ) ≤ x .

qed


