
Technische Universität München WS 2021/22
Institut für Informatik 14.12.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Lectures
Exercise Sheet 8

Starting from this sheet, we will use Isabelle 2021-1. Additionally, install the
linter component from https://github.com/isabelle-prover/isabelle-linter.

Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone
function f we have a fixpoint of f which is a greatest lower bound of P . In this exercise,
we want to prove the Knaster-Tarski theorem.
First we give a construction of the greatest lower bound of all fixed points P of the
function f. This is the union of all sets u smaller than P and f u. Then the task is to
show that this is a fixed point, and that it is the greatest lower bound of all sets in P.
Let us define Inf_fixp:
definition Inf_fixp :: “(′a set ⇒ ′a set) ⇒ ′a set set ⇒ ′a set” where

“Inf_fixp f P =
⋃
{u. u ⊆

⋂
P ∩ f u }”

To work directly with this definition is a little cumbersome, we propose to use the
following two theorems:
lemma Inf_fixp_upperbound: “X ⊆

⋂
P =⇒ X ⊆ f X =⇒ X ⊆ Inf_fixp f P”

by (auto simp: Inf_fixp_def)

lemma Inf_fixp_least: “(
∧

u. u ⊆
⋂

P =⇒ u ⊆ f u =⇒ u ⊆ X) =⇒ Inf_fixp f P ⊆ X”
by (auto simp: Inf_fixp_def)

Now prove, that Inf_fixp is acually a fixed point of f.
Hint: First prove Inf_fixp f P ⊆ f (Inf_fixp f P), this will be used for the other direction.
It may be helpful to first think about the structure of your proof using pen-and-paper
and then translate it into Isar.
lemma Inf_fixp:

assumes f : “mono f”
and P: “

∧
p. p ∈ P =⇒ f p = p”

shows “Inf_fixp f P = f (Inf_fixp f P)”

Now we prove that it is a lower bound:
lemma Inf_fixp_lower : “Inf_fixp f P ⊆

⋂
P”

1

https://github.com/isabelle-prover/isabelle-linter

And that it is the greatest lower bound:
lemma Inf_fixp_greatest:

assumes “f q = q”
and “q ⊆

⋂
P”

shows “q ⊆ Inf_fixp f P”

Exercise 8.2 While combinator

So far, all functions that we defined were required to terminate. However, there is also
a while-combinator in HOL. For instance, the IMP-program
WHILE Less (V ′′x ′′) (N 3) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)
could be stated in HOL as follows:
value “while (λx::nat. x < 3) (λx. x + 2) 0”

Take a look at the definition. What is surprising about it? Can you state and refute
(using nitpick) lemmas about involved constants that should at first glance hold?

Using while, define an exec function for commands:
fun exec :: “com ⇒ state ⇒ state”

Example:
value “(exec (WHILE Less (V ′′x ′′) (N 3) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)) <>) ′′x ′′”

Show that exec is correct:
lemma “(c,s) ⇒ t =⇒ exec c s = t”

Homework 8.1 Be Original!

Submission until Sunday, Jan 8, 23:59pm. Think up a nice topic to formalize yourself,
for example

• Prove some interesting result about automata/formal language theory
• Formalize some results from mathematics
• Show properties of some interesting algorithm
• ...

You will have time until after the winter break (Jan 8) to finish the project; during this
time, regular homework load will be reduced. In total, this exercise will be worth 20
points, plus bonus points for nice submissions.

2

This week, you should find a topic and start to formalize some concepts from it. Be
creative! The topic can be from any area; your project will also be judged on creativity.
Until the end of this week (Dec 19), send an e-mail with your planned topic to the tutor
(3 points).
You are also welcome to discuss your plans with the tutor. This is, however, not a
necessity by any means.
For the actual project:

• you should set yourself a time limit before you start
• incomplete/unfinished formalizations are welcome and will be graded
• comment your formalization well, such that we can see what it does/is intended

to do
• the code quality of your formalization also matters, so make sure to use the linter

add-on component

Homework 8.2 Call Inlining (bonus)

Submission until Sunday, Dec 19, 23:59pm. This is a bonus exercise worth 2 (easy part)
+ 5 (hard part) points.
Consider an extension of IMP with procedures:
datatype com = SKIP | Assign (char list) aexp | Seq com com | If bexp com com |
While bexp com | CALL (char list)
The big-step semantics is extended with a procedure environment penv. The new rule
is:
pe ` (pe p, s) ⇒ t =⇒ pe ` (CALL p, s) ⇒ t
Define a relation inlines between the original com ′ and the new version, such that the
semantics are equivalent (warm-up):
inductive inlines :: “penv ⇒ com ⇒ com ′ ⇒ bool” for pe

code_pred inlines .

The easy part Show correctness of your inlining:

theorem inline_correct: “inlines pe c c ′ =⇒ pe ` (c, s) ⇒ t = (c ′, s) ⇒ t”

However, this inlining depends on the derivation for inlines, which does not exist for
recursive programs.

The hard part We want to show that an inlining exists for every non-recursive program.
First, define the set of recursive calls, i.e. all pnames that can occur in the execution of

3

a com.
Hint: Recall the transitive reflexive closure.

definition rec_pnames :: “penv ⇒ com ⇒ pname set”

With that, define non-recursive programs, and show that for those, an inlining exists.
Since any penv defined by source code would be finite, we may also assume that that
rec_pnames is finite.
definition nonrec :: “penv ⇒ com ⇒ bool”
lemma example1: “nonrec (λp. if p = ′′end ′′ then SKIP else CALL ′′end ′′) (SKIP;;CALL
′′proc ′′)”

lemma example2: “¬nonrec (λ_. CALL ′′rec ′′) (CALL ′′proc ′′)”

Hint: For the induction, find a way to encode the size of a penv and com into natural
number, and induct over that using less_induct. For finite sets, sum f A sums up all
elements after applying f to them.

theorem inline_nonrec:
assumes finite: “finite (rec_pnames pe c)”

and nonrec: “nonrec pe c”
shows “∃ c ′. inlines pe c c ′”

4

