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Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b in
variable c.
definition Max :: “com”

Step 2 Prove these lemmas about max:
lemma max_right[simp]: “(a::int)<b =⇒ max a b = b”

lemma max_left[simp]: “¬(a::int)<b =⇒ max a b = a”

Show that Tut.Max satisfies the following Hoare triple:
lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.
definition MUL :: “com”

Step 4 Prove that MUL does the right thing.
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra_simps, containing some useful lemmas
like distributivity.
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• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated] attribute:

lemmas Seq_bwd = Seq[rotated]

lemmas hoare_rule[intro?] = Seq_bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.
For example, regard the following (wrong) implementation of Tut.Max:
definition “MAX_wrong = ( ′′a ′′::=N 0;; ′′b ′′::=N 0;; ′′c ′′::= N 0)”

Prove that MAX_wrong also satisfies the specification for Tut.Max:
lemma “` {λs. True} MAX_wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that Tut.Max computes the maximum of the values
of a and b in the initial state. Moreover, we may require that a and b are not changed.
For this, we can use logical variables in the specification. Prove the following more
accurate specification for Tut.Max:
lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}

Max {λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 9.2 Forward Assignment Rule

Think up and prove correct a forward assignment rule, i.e., a rule of the form ` {P} x
::= a {Q}, where Q is some suitable postcondition. Hint: To prove this rule, use the
completeness property, and prove the rule semantically.

lemmas fwd_Assign ′ = weaken_post[OF fwd_Assign]

Redo the proofs for Tut.Max and MUL from the previous exercise, this time using your
forward assignment rule.
lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”
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Homework 9.1 Floyd’s Method for Program Verification

Submission until Sunday, Jan 09, 23:59pm.
This homework runs in parallel to the be original project and is worth 10
points (but less effort than a regular sheet).
A flow graph is a directed graph with labeled edges:
type_synonym ( ′n, ′l) flowgraph = “ ′n ⇒ ′l ⇒ ′n ⇒ bool”

Labels come with an enabled predicate and an effect function. The enabled predicate
checks whether a label is enabled in a state, and the effect function applies the effect of
a label to a state.
The following formalizes this setting by defining a context in which G, enabled, and effect
are fixed (but arbitrary) constants:
locale flowgraph =

fixes G :: “( ′n, ′l) flowgraph”
fixes enabled :: “ ′l ⇒ ′s ⇒ bool”
fixes effect :: “ ′l ⇒ ′s ⇒ ′s”

begin

We define a small-step semantics on flow graphs: Configurations are pairs of nodes and
states. A step is induced by an enabled edge, and applies the effect of the edge to the
state. Define the single step rule:
inductive step :: “( ′n× ′s) ⇒ ( ′n× ′s) ⇒ bool”

We form the reflexive transitive closure over our small-step semantics:
abbreviation “steps ≡ star step”

The idea of Floyd’s method is to annotate an invariant over states to each node in the
flow graph, and show that the invariant is preserved by the edges. Again, we use a
context to fix an invariant and assume preservation:
context

fixes I :: “ ′n ⇒ ( ′s ⇒ bool)”
assumes preserve: “[[ I n s; G n l n ′; enabled l s ]] =⇒ I n ′ (effect l s)”

begin

Show that the invariant is preserved by multiple steps:
lemma preserves:

assumes “steps (n,s) (n ′,s ′)”
and “I n s”

shows “I n ′ s ′”

end

end

Now, let’s instantiate the flow graph context for IMP-programs. Edges are labeled by
conditions, assignments, or skip:
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datatype label = Assign (char list) aexp | Cond bexp | Skip

Define the enabled and effect functions for edges:
fun enabled :: “label ⇒ state ⇒ bool”
fun effect :: “label ⇒ state ⇒ state”

For nodes, we use commands. Similar to the small-step semantics, a node indicates the
command that still has to be executed. Define the flow graph for IMP programs. We
give you the case for assignment and if-false here, you have to define the other cases.
Make sure that you use the same intermediate steps as (→) does, this will simplify the
next proof:
inductive cfg :: “com ⇒ label ⇒ com ⇒ bool”

where
“cfg (x::=a) (Assign x a) SKIP”
| “cfg (IF b THEN c1 ELSE c2) (Cond (Not b)) c2”

code_pred cfg .

The following instantiates the flow graph context:
interpretation flowgraph cfg enabled effect .

I.e., you can now use the preserves lemma outside its context:
thm preserves

Show that execution of flow graphs and the small-step semantics coincide:

lemma steps_eq: “cs →∗ cs ′←→ steps cs cs ′”

Combine your results to prove the following theorem, which allows you to prove cor-
rectness of programs with Floyd’s method. (Hint: Big and small-step semantics are
equivalent!)
lemma floyd:

assumes PRE : “
∧

s. P s =⇒ I c s”
and PRES : “

∧
n s c l c ′. [[cfg c l c ′; I c s; enabled l s ]] =⇒ I c ′ (effect l s)”

and POST : “
∧

s. I SKIP s =⇒ Q s”
shows “|= {P} c {Q}”

Homework 9.2 Be Original!

Submission until Sunday, Jan 9, 23:59pm. Think up a nice topic to formalize yourself,
for example

• Prove some interesting result about automata/formal language theory
• Formalize some results from mathematics
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• Show properties of some interesting algorithm
• ...

In total, this exercise will be worth 20 points, plus bonus points for nice submissions.
Formalize your topic!

• you should set yourself a time limit before you start
• incomplete/unfinished formalizations are welcome and will be graded
• comment your formalization well, such that we can see what it does/is intended

to do
• the code quality of your formalization also matters, so make sure to use the linter

add-on component

Merry Christmas!
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