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Exercise 11.1 Complete Lattice over Lists

Show that lists of the same length – ordered point-wise – form a partial order if the
element type is partially ordered. Partial orders are predefined as the type class order.
instantiation list :: (order) order

Define the infimum operation for a set of lists. The first parameter is the length of the
result list.
definition Inf_list :: “nat ⇒ ( ′a::complete_lattice) list set ⇒ ′a list”

Show that your ordering and the infimum operation indeed form a complete lattice:
interpretation

Complete_Lattice “{xs. length xs = n}” “Inf_list n” for n

Exercise 11.2 Fixed Point Theory

Let ′a be a complete lattice with ordering ≤ and f :: ′a ⇒ ′a be a monotonic function.
Moreover, let x0 be a post-fixpoint of f, i.e., x0 ≤ f x0. Prove:⊔

{f i(x0) | i∈�} ≤
⊔

{f i+1 (x0) | i∈�}

Hint: The least upper bound satisfies the following properties

x∈A =⇒ x ≤
⊔

A (upper)

(∀ x∈A. x ≤ u) =⇒
⊔

A ≤ u (least)

General homework instructions The exercises on this sheet are similar to pen&paper
exam questions. Solve them on pen&paper, then fill out your solution into template on
the submission system.
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Homework 11.1 Collecting Semantics

Submission until Sunday, Jan 23, 23:59pm.
Consider a version with two (informally given) extensions:

• the arithmetic expressions from last weeks sheet
• a Do-While construct, where the command is executed first and then the condition

is checked for the next iteration.

Annotations and the step function stay the same for all other constructs. For the new
construct, the annotations can be inferred from the following annotated command:

| x := 2 {A0};
| DO {A1}
| IF x < 3 THEN {A2} x := x * x {A3}
| ELSE {A4} x := y / x {A5}
| {A6}
| WHILE 0 < x
| {A7}

Compute the collecting semantics: Show how the annotations change with each applica-
tion of the step function, until you reach a fix-point. On paper, use the tabular notation:

0 1 2 3 4 5 6 7 8 9 10
A0
A1
A2
A3
A4
A5
A6
A7

For brevity, abbreviate a state <x := k, y := j> by k,j when you fill in the table. Entries
that do not change can be left blank.

Write down all changed entries in your pen&paper table, as a (xy-)tuple per state and
with the number of the header column as col index:
type_synonym st = “int ∗ int”
type_synonym col = “nat ∗ (st set)”
type_synonym row =“col list”

definition table :: “row list”
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Homework 11.2 Counterexamples

Submission until Sunday, Jan 23, 23:59pm.
We know that least pre-fixpoints of monotone functions are also least fixpoints.

1. Show that leastness matters: find a (small!) partial order with a monotone function
that has a pre-fixpoint that is not a fixpoint.

2. Show that the reverse implication does not hold: find a partial order with a mono-
tone function function that has a least fixpoint that is not a least pre-fixpoint.

Do pen&paper-proofs, either as comment in your submission file or send it by e-mail.

Homework 11.3 Linter Survey (bonus)

Submission until Sunday, Jan 23, 23:59pm. This is a bonus exercise worth 2 points.
Fill out the survey about the linter tool at https://forms.gle/bqxEm4uwSvk1wGXA6.
The survey is anonymous, but will have a code at the end – fill it in here:
definition code :: string
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https://forms.gle/bqxEm4uwSvk1wGXA6

