Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Compiler optimization

A common programming idiom is $I F$ b THEN c, i.e., the else-branch consists of a single SKIP command.

1. Look at how the program IF Less ($\left.V^{\prime \prime} x^{\prime \prime}\right)(N 5) T H E N{ }^{\prime \prime} y^{\prime \prime}::=N 3$ ELSE SKIP is compiled by ccomp and identify a possible compiler optimization.
2. Implement an optimized compiler ccomp2 which reduces the number of instructions for programs of the form IF bTHEN c. Try to finish ccomp2 without looking up ccomp!
3. Extend the proof of comp_bigstep to your modified compiler.
```
value "ccomp (IF Less ( \(\left.V^{\prime \prime} x^{\prime \prime}\right)(N 5) T H E N{ }^{\prime \prime} y^{\prime \prime}::=N 3\) ELSE SKIP)"
fun ccomp2 :: "com \(\Rightarrow\) instr list" where
    "ccomp2 SKIP \(=[] " \mid\)
    "ccomp2 \((x::=a)=\) acomp \(a @[S T O R E x] " \mid\)
    "ccomp2 \(\left(c_{1} ; ; c_{2}\right)=\) ccomp2 \(c_{1}\) @ ccomp2 \(c_{2} " \mid\)
    "ccomp2 (WHILE b DO c) =
        (let \(c c=\) ccomp2 \(c ; c b=b c o m p b\) False \((\) size \(c c+1)\)
        in \(c b @ c c @[J M P(-(\) size \(c b+\) size \(c c+1))]) "\)
value "ccomp2 (IF Less ( \(\left.V^{\prime \prime} x^{\prime \prime}\right)(N 5) T H E N{ }^{\prime \prime} y^{\prime \prime}::=N 3\) ELSE SKIP)"
lemma ccomp_bigstep:
    " \((c, s) \Rightarrow t \Longrightarrow\) ccomp2 \(c \vdash(0, s, s t k) \rightarrow *(\operatorname{size}(\) ccomp2 \(c), t, s t k)\) "
```


Exercise 6.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conversions: Adding an integer and a real results in a real value, comparing an integer and a real can be done by first converting the integer into a real. Implicit conversions like this are called coercions.

1. Modify, in the theory $H O L-I M P$. Types (copy it first), the inductive definitions of taval/tbval and atyping/btyping such that implicit coercions are applied where necessary.
2. Adapt all proofs in the theory $H O L-I M P$.Types accordingly.

Hint: Isabelle already provides the coercion function real_of_int (int \Rightarrow real).

Homework 6.1 Loop Compiler

Submission until Monday, December 5, 23:59pm.
For this exercise we have replaced the normal WHILE loop in IMP by a new Loop c b construct (without nice syntax). The modified type com and the big-step semantics are given in the definitions file. Your task is to define the compiler ccomp for the new loop construct and prove the correctness theorem ccomp_bigstep.

```
fun ccomp :: "com \(\Rightarrow\) instr list" where
"ccomp SKIP = []"
"ccomp \((x::=a)=\) acomp \(a\) @ [STORE \(x]\) " \(\mid\)
"ccomp \(\left(c_{1} ; ; c_{2}\right)=\) ccomp \(c_{1} @\) ccomp \(c_{2} " \mid\)
"ccomp (IF b THEN \(c_{1}\) ELSE \(c_{2}\) ) =
    (let \(c c_{1}=c c o m p c_{1} ; c c_{2}=c c o m p c_{2} ; c b=\) bcomp b False \(\left(s i z e ~ c c_{1}+1\right)\)
    \(i n c b\) @ \(\left.c c_{1} @ J M P\left(s i z e c c_{2}\right) \# c c_{2}\right)\) "
value "ccomp (Loop (" \(u^{\prime \prime}::=\) Plus \(\left.\left(V^{\prime \prime} u^{\prime \prime}\right)\left(\begin{array}{l}\text { 1 } 1\end{array}\right)\right)\left(\right.\) Less \(\left.\left(\begin{array}{l}N\end{array}\right)\left(V^{\prime \prime} u^{\prime \prime}\right)\right)\) )"
lemma ccomp_bigstep:
    " \((c, s) \Rightarrow t \Longrightarrow\) ccomp \(c \vdash(0, s, s t k) \rightarrow *(\) size \((\) ccomp \(c), t, s t k)\) "
```


Homework 6.2 Pairs

Submission until Monday, December 5, 23:59pm.
In this exercise, we extend the expression language of $I M P$ with pair values:

```
datatype val = Iv int | Pv val val
```

Complete the following inductive predicate for evaluating expressions:

```
inductive taval \(::\) "aexp \(\Rightarrow\) state \(\Rightarrow\) val \(\Rightarrow\) bool" where
"taval \((N i) s(I v i) " \mid\)
"taval \((V x) s(s x) " \mid\)
"taval a1 \(s\) (Iv i1) \(\Longrightarrow\) taval a2 s (Iv i2)
\(\Longrightarrow\) taval (Plus a1 a2) s (Iv \((i 1+i 2)) "\)
inductive_cases [elim!]:
    "taval \((N i) s v "\)
    "taval (Vx) s v"
    "taval (Plus a1 a2) s v"
```

Boolean expressions stay the same - pairs can not be compared.
inductive tbval :: "bexp \Rightarrow state \Rightarrow bool \Rightarrow bool" where

```
"tbval (Bc v) s v"
"tbval b s bv \(\Longrightarrow\) tbval (Not b) s ( \(\neg\) bv)"
"tbval b1 s bv1 \(\Longrightarrow\) tbval b2 s bv2 \(\Longrightarrow\) tbval (And b1 b2) \(s(b v 1 \wedge\) bv2)"
"taval a1s (Iv i1) \(\Longrightarrow\) taval a2 s (Iv i2) \(\Longrightarrow\) tbval (Less a1 a2) \(s(i 1<i 2) "\)
```

We add a command to swap the first and second element of a pair:
datatype com $=$ SKIP \mid Assign (char list) aexp \mid Seq com com \mid com.If bexp com com
| While bexp com \mid SWAP (char list)
Adapt the small-step semantics accordingly:

```
inductive
    small_step :: " com \(\times\) state \() \Rightarrow(\) com \(\times\) state \() \Rightarrow\) bool" (infix " \(\rightarrow\) " 55)
where
Assign: "taval a s \(v \Longrightarrow(x::=a, s) \rightarrow(S K I P, s(x:=v)) " \mid\)
Seq1: " \((S K I P ; ; c, s) \rightarrow(c, s)\) "
Seq2: " \((c 1, s) \rightarrow\left(c 1^{\prime}, s^{\prime}\right) \Longrightarrow(c 1 ; ; c 2, s) \rightarrow\left(c 1^{\prime} ; ; c 2, s^{\prime}\right) " \mid\)
IfTrue: "tbval b s True \(\Longrightarrow(\) IF b THEN c1 ELSE c2,s) \(\rightarrow(c 1, s)\) " \(\mid\)
IfFalse:"tbval b s False \(\Longrightarrow\) (IF b THEN c1 ELSE c2,s) \(\rightarrow(c 2, s) " \mid\)
While: "(WHILE b DO \(c, s) \rightarrow(\) IF b THEN \(c\); WHILE b DO c ELSE SKIP,s)"
lemmas small_step_induct \(=\) small_step.induct[split_format( complete \()\) ]
```

We now also add a pair type to the typing system:
datatype $t y=I t y \mid$ Pty ty ty
Complete the atyping and ctyping rules:

```
inductive atyping ::"tyenv \(\Rightarrow\) aexp \(\Rightarrow\) ty \(\Rightarrow\) bool"
    ("(1_/ト/(_:/ _))" \([50,0,50] 50)\) where
Ic_ty: " \(\Gamma \vdash N i\) : Ity"
V_ty: \(\times \vdash V x: \Gamma x "\)
declare atyping.intros [intro!]
inductive_cases [elim!]:
    \(" \Gamma \vdash V x: \tau\) " " \(\Gamma \vdash N i: \tau\) " " \(\Gamma\) Plus a1 a2 : \(\tau\) "
inductive btyping ::"tyenv \(\Rightarrow\) bexp \(\Rightarrow\) bool" (infix " " 50) where
B_ty: "Г \(\vdash\) Bc v"
Not_ty: " \(\Gamma \vdash b \Longrightarrow \Gamma \vdash\) Not \(b " \mid\)
And_ty: " \(\Gamma \vdash b 1 \Longrightarrow \Gamma \vdash b 2 \Longrightarrow \Gamma \vdash\) And b1 b2"
Less_ty: " \(\Gamma \vdash a 1:\) Ity \(\Longrightarrow \Gamma \vdash a 2:\) Ity \(\Longrightarrow \Gamma \vdash\) Less a1 a2"
declare btyping.intros [intro!]
inductive_cases [elim!]: " \(\Gamma \vdash\) Not b" " \(\Gamma \vdash\) And b1 b2" " \(\Gamma \vdash\) Less a1 a2"
inductive ctyping :: "tyenv \(\Rightarrow\) com \(\Rightarrow\) bool" (infix " - " 50) where
Skip_ty: " \(\Gamma \vdash S K I P " \mid\)
Assign_ty:" \(\Gamma \vdash a: \Gamma(x) \Longrightarrow \Gamma \vdash x::=a " \mid\)
Seq_ty: " \(\Gamma \vdash c 1 \Longrightarrow \Gamma \vdash c \mathcal{Z} \Longrightarrow \Gamma \vdash c 1 ; ; c 2\) "
If_ty: ' \(\Gamma \vdash b \Longrightarrow \Gamma \vdash c 1 \Longrightarrow \Gamma \vdash c 2 \Longrightarrow \Gamma \vdash I F b\) THEN c1 ELSE c2"
```

```
While_ty: " \(\Gamma \vdash b \Longrightarrow \Gamma \vdash c \Longrightarrow \Gamma \vdash\) WHILE \(b\) DO \(c\) "
declare ctyping.intros [intro!]
inductive_cases [elim!]:
    "Г \(\vdash x::=a " " \Gamma \vdash c 1 ; ; c 2 "\)
    " \(\Gamma\) トIF b THEN c1 ELSE c2"
    "下トWHILE b DO \(c\) "
```

Complete the proofs of preservation and progress．
Hint：You will need a lemma similar to type＿eq＿Ity for Pty t1 t2．
theorem apreservation：
$" \Gamma \vdash a: \tau \Longrightarrow$ taval a s $v \Longrightarrow \Gamma \vdash s \Longrightarrow$ type $v=\tau "$
theorem aprogress：$" \Gamma \vdash a: \tau \Longrightarrow \Gamma \vdash s \Longrightarrow \exists v$ ．taval a s v＂
theorem bprogress：＂$\Gamma \vdash b \Longrightarrow \Gamma \vdash s \Longrightarrow \exists v$ ．tbval bs v＂
theorem progress：

$$
" \Gamma \vdash c \Longrightarrow \Gamma \vdash s \Longrightarrow c \neq S K I P \Longrightarrow \exists c s^{\prime} .(c, s) \rightarrow c s^{\prime} "
$$

theorem styping＿preservation：

$$
"(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow \Gamma \vdash c \Longrightarrow \Gamma \vdash s \Longrightarrow \Gamma \vdash s^{\prime} "
$$

theorem ctyping＿preservation：

$$
"(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow \Gamma \vdash c \Longrightarrow \Gamma \vdash c^{\prime} "
$$

abbreviation small＿steps ：：＂com $*$ state \Rightarrow com $*$ state \Rightarrow bool＂（infix＂$\rightarrow *$＂55） where＂$x \rightarrow * y==$ star small＿step $x y$＂

Finally，we can recover the proof of type－soundness：

```
theorem type_sound:
    "(c,s)->* (c',s')\Longrightarrow\Gamma\vdashc\Longrightarrow\Gamma\vdashs\Longrightarrow\mp@subsup{c}{}{\prime}\not=SKIP
    \Longrightarrow\existsc\mp@subsup{s}{}{\prime\prime}.(\mp@subsup{c}{}{\prime},\mp@subsup{s}{}{\prime})->c\mp@subsup{s}{}{\prime\prime\prime}
```

