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Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:
definition Or :: “bexp ⇒ bexp ⇒ bexp” where

“Or b1 b2 = Not (And (Not b1) (Not b2))”

Prove or disprove (by giving counterexamples) the following program equivalences.
1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c
3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c
4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.
2. Adapt the big step semantics to include rules for the new commands.
3. Prove that c1 OR c2 ∼ c2 OR c1.
4. Prove: (IF b THEN c1 ELSE c2) ∼ ((ASSUME b; c1) OR (ASSUME (Not b);

c2))

Note: It is easiest if you take the existing theories and modify them.

Exercise 5.3 Deskip

Define a recursive function
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fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:
Hint: Take a look at SkipE and sim_while_cong.
lemma “deskip c ∼ c”

Homework 5.1 SWITCHeroo

Submission until Monday, November 28, 23:59pm.

We introduce the type of SWITCH-IMP programs by modifying the type of com-
programs as follows:

1. All boolean expressions are replaced by corresponding arithmetic expressions. An
an integer should be interpreted as false if it is equal to 0 and true otherwise:
is_false x ≡ x = 0
is_true x ≡ ¬ is_false x

2. We remove the IF b THEN c1 ELSE c2 constructor.
3. We add a switch constructor SWITCH a CASES acs. The constructor takes

an arithmetic expression a and a list of pairs acs of arithmetic expressions and
commands. The semantics of SWITCH a CASES acs is as follows:

• Switching on an empty list does not change the state.
• Switching on a non-empty list (a ′,c) # acs executes c and then exits the

switch if a and a ′ are semantically equal; otherwise, it continues switching on
a and acs.

datatype scom = sSKIP | sAssign (char list) aexp | sSeq scom scom | sWhile aexp
scom | sSwitch aexp ((aexp × scom) list)

Define the big-step semantics as an inductive predicate. Hint: Do not use list functions!
inductive sbig_step :: “scom × state ⇒ state ⇒ bool” (infix “⇒s” 55)

Define a function that compiles SWITCH-IMP programs to semantically equivalent IMP
programs.
fun scom_to_com :: “scom ⇒ com”

Prove that your compiler is correct:
Hint: if one of the parameters of your induction is a complex term t (i.e. not just a
variable), you can pass the term as an argument to the induction method as you would
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do for a variable, but you need to enclose the term in quotes. The free variables in t
must be marked as arbitrary:.
lemma big_step_scom_to_com_if_big_step: “(c, s) ⇒s t =⇒ (scom_to_com c, s) ⇒ t”
lemma sbig_step_if_big_step_scom_to_com: “(scom_to_com c, s) ⇒ t =⇒ (c, s) ⇒s t”
corollary “(c, s) ⇒s t ←→ (scom_to_com c, s) ⇒ t”

Now define the single-step small-step semantics as an inductive predicate. Do not use
list functions!
inductive ssmall_step :: “scom ∗ state ⇒ scom ∗ state ⇒ bool” (infix “→s” 55)

As usual, we can take the reflexive, transitive closure of the single-step small-step se-
mantics.
abbreviation ssmall_steps :: “scom ∗ state ⇒ scom ∗ state ⇒ bool” (infix “→s∗” 55)

where “x →s∗ y ≡ star ssmall_step x y”

Prove the equivalence of the small-step and big-step semantics.
Hint: copy and adapt the lemmas that where proven in the lecture for small-step seman-
tics.
lemma ssmall_steps_if_sbig_step: “(c, s) ⇒s t =⇒ (c, s) →s∗ (sSKIP, t)”
lemma sbig_step_if_ssmall_steps: “cs →s∗ (sSKIP, t) =⇒ cs ⇒s t”
corollary “(c, s) ⇒s t ←→ (c, s) →s∗ (sSKIP, t)”

Finally, we consider a non-deterministic, alternative semantics for switches:

• Switching on an empty list does not change the state.
• Switching on a non-empty list (a ′,c) # acs continues switching on a and acs if

a and a ′ are not semantically equal; otherwise, it either first executes c and then
exits the switch or it continues switching on a and acs.

inductive nsbig_step :: “scom × state ⇒ state ⇒ bool” (infix “⇒ns” 55)

Prove that the non-deterministic semantics can simulate the deterministic semantics.
lemma nsbig_step_if_sbig_step: “(c, s) ⇒s t =⇒ (c, s) ⇒ns t”

Prove or disprove the converse direction. If you think that one of the following two
lemmas is wrong, close the lemma statement with an oops.
lemma conjecture_true: “(c, s) ⇒ns t =⇒ ∃ t. (c, s) ⇒ns t ∧ (c, s) ⇒s t”

lemma conjecture_false: “∃ c s t. (c, s) ⇒ns t ∧ ¬(∃ t. (c, s) ⇒ns t ∧ (c, s) ⇒s t)”
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