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Exercise 8.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.
Available assignments can be used for program optimization, by avoiding recomputation
of expressions whose value is already available in some variable.
fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where

“AA SKIP A = A”
| “AA (x ::= a) A = (if x /∈ vars a then {(x, a)} else {})

∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}”
| “AA (c1;; c2) A = (AA c2 ◦ AA c1) A”
| “AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A”
| “AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that
AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.
fun gen :: “com ⇒ (vname × aexp) set”
and kill :: “com ⇒ (vname × aexp) set”
lemma AA_gen_kill: “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:
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theorem AA_sound:
“(c, s) ⇒ s ′ =⇒ ∀ (x, a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

Homework 8 Be Original!

Submission until Monday, Dec 25, 23:59pm.
Think up a nice topic to formalize yourself! It can be from any area of mathematics,
computer science, etc., but should contain some interesting proof(s) – mere definitions
or implementations are not interesting.
Creativity is encouraged and will be graded, but keep in mind that formalizations can
often be more difficult than anticipated. Set yourself realistic goals! You are also welcome
to discuss your project with us beforehand.
Comment your formalization well such that we can see what it is intended to do.
Incomplete or unfinished formalizations are welcome and will be graded (but clean them
up so it is obvious what is there and what is missing).
The project will run until the winter holiday. This week, it makes up for half of the
homework, and next week the full homework –
in total, this exercise will be worth 15 points, plus bonus points for nice submissions.

Homework 8 Denoting the ol’ Switcheroo

Submission until Monday, Dec 18, 23:59pm.

Note: For this homework, wait until after the Thursday lecture on denotational semantics.

Define a denotational semantics for our IMP with the nondeterministic SWITCH CASES
construct. Define the semantics in a functional way:

• one equation per construct, no if / case
• in the SWITCH CASES equation, use list functions such as map and set
• it is not allowed to define any auxiliary function (W is already given)

fun D :: “com ⇒ com_den”

Now adapt the correctness proofs w.r.t. to the big-step semantics – do not use smt,
metis, meson, moura, or argo (i.e., most sledgehammer-generated proofs).
lemma D_if_big_step: “(c,s) ⇒ t =⇒ (s,t) ∈ D(c)”
lemma Big_step_if_D: “(s,t) ∈ D(c) =⇒ (s,t) ∈ Big_step c”

theorem denotational_is_big_step:
“(s,t) ∈ D(c) = ((c,s) ⇒ t)”
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by (blast intro: D_if_big_step Big_step_if_D[simplified])
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