
Technische Universität München WS 23/24
Institut für Informatik 23.01.2024

Prof. Tobias Nipkow, Ph.D.
Fabian Huch, Kevin Kappelmann

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Complete Lattice over Lists

Show that lists of the same length – ordered point-wise – form a partial order if the
element type is partially ordered. Partial orders are predefined as the type class order.
instantiation list :: (order) order

Define the infimum operation for a set of lists. The first parameter is the length of the
result list.
definition Inf_list :: “nat ⇒ (′a::complete_lattice) list set ⇒ ′a list”

Show that your ordering and the infimum operation indeed form a complete lattice:
interpretation list_complete_lattice:

Complete_Lattice “{xs. length xs = n}” “Inf_list n” for n

Exercise 12.2 Bekić’s theorem

In the following, we want to prove that the least fixed-point of a monotone function on
pairs can be separated into a series of least fixed points. On wikipedia, the theorem is
described as follows:
Bekić’s theorem (called the ”bisection lemma” in his notes) is that the simultaneous
least fixed point µ(x, y).(f, g)(x, y) = (x0, y0) can be separated into a series of least fixed
points, in particular:
x0 = µx.f(x, µy.g(x, y))

y0 = µy.g(x0, y)

Proof (Bekić):
y0 = g(x0, y0) since it is the fixed point. Similarly x0 = f(x0, µy.g(x0, y)) = f(x0, y0).
Hence x0, y0 is a fixed point of (f, g). Conversely, if there is a pre-fixed point (x1, y1) with
(x1, y1) ≥ (f(x1, y1), g(x1, y1)), then x1 ≥ f(x1, µy.g(x1, y) ≥ x0 and y1 ≥ µy.g(x1, y) ≥
µy.g(x0, y) = y0; hence (x1, y1) ≥ (x0, y0) (x0, y0) is the minimal fixed point.
In the following, we want to formalize this pen-and-paper proof:
lemma

1

fixes f g assumes mono: “mono (λ(x,y).(f , g)(x,y))”
defines “x0 ≡ µ x. f (x,µ y. g (x,y))”
defines “y0 ≡ µ y. g (x0,y)”
shows “µ(x,y). (f ,g)(x,y) = (x0,y0)”

Homework 12.1 Collecting Semantics

Submission until Monday, Jan 29, 23:59pm.

Consider the following program in an extended version of IMP.

| x := 9 {A0};
| y := 3 {A1};
| {A2}
| WHILE x > 0
| DO {A3}
| x := x div y; {A4}
| y := y + 1; {A5}
| {A6}

Compute the collecting semantics: Show how the annotations change with each applica-
tion of the step function, until you reach a fix-point.
Write down all entries for each column. If some value did not change, use the ________
(8 underscores) term. Write the states down using sets of (x,y) tuples in explicit form,
i.e. sets of the shape {(x1, y2), (x2, y2), ...}. The first annotation is pre-defined by us.
definition A0 :: “entry list” where “A0 = [V{},V{(9,0)},________,________,________
,________ ,________ , ________ , ________ , ________ ,
________ , ________, ________]”

definition A1 :: “entry list”
definition A2 :: “entry list”
definition A3 :: “entry list”
definition A4 :: “entry list”
definition A5 :: “entry list”
definition A6 :: “entry list”

Homework 12.2 Galois Connections

Submission until Monday, Jan 29, 23:59pm.

In the lecture, we will derive a generic framework for abstract interpretation. An abstract
interpreter over-approximates the semantics of a program. For this, it symbolically
executes the program, using abstract values instead of concrete ones. To do so, the
abstract interpreter requires an abstraction f abs for each operation f of the core language.

2

To obtain a sound and terminating interpreter, each abstraction f abs must satisfy some
conditions. Particularly, each abstraction must be (1) sound with respect to f and (2)
monotone with respect to its abstract domain.
The aim of this exercise is to show that each such abstraction is just an over-approximation
of something called a Galois connection; or in other words: Galois connections are the
best (over-)approximations.
To define Galois connections, we first need to introduce two other concepts:

1. Given two relations R, S and functions f , g, we say that f , g are related from R to
S if all R-related inputs x, y are mapped to S-related outputs f x, g y. Formally,
the function relator is defined as follows:
R V S ≡ {(f , g). ∀ x y. (x, y) ∈ R −→ (f x, g y) ∈ S}

2. Second, given two relations R, S and a function f, we say that f is monotone from
R to S if f is related to itself from R to S. Formally:
(R Vm S) f ≡ (f , f) ∈ R V S

Fix two relations L, R such that L and R are preorders on their respective domains.
Further fix two functions l, r such that l is monotone from L to R and r is monotone
from R to L. We say that L, R, l, r forms a Galois connection, written (L a R) l r, if
(x, r y) ∈ L ←→ (l x, y) ∈ R for all x ∈ Domain L and y ∈ Domain R.
We call L the left relation, R the right relation, l the left adjoint, and r the right adjoint
of the Galois connection.1

In the case of abstract interpretation, L constitutes the order on the concrete domain,
R the order on the abstract domain, l x the abstraction of a concrete value x, and r y
the concretisation of an abstract value y.2

Given a concretisation function r, an abstract value y is a sound abstraction of a concrete
value x if r y over-approximates x. We define this relation formally:
x L/R r y ≡ y ∈ Domain R ∧ (x, r y) ∈ L
Prove that l x is a sound abstraction for Galois connections:
lemma galois_con_sound_selfI :

assumes “(L a R) l r”
and “x ∈ Domain L”

shows “x L/R r l x”

Now prove the dual result: l (r y) is an under-approximation of y.
lemma galois_con_counit_underapproxI :

assumes “(L a R) l r”
and “y ∈ Domain R”

shows “(l (r y), y) ∈ R”

1Galois connections are adjoints between preorder categories; hence the terminology.
2In practice, L often denotes the identity relation.

3

Given a relation S, we say that x, y are S-equal if (x, y) ∈ S and (y, x) ∈ S. We write
x ≡S y in such cases.
Prove that the concretisation of a value is equivalent to the conretisation of its abstracted
concretisation:
lemma galois_con_right_counit_rel_eqI :

assumes “(L a R) l r”
and “y ∈ Domain R”

shows “r (l (r y)) ≡L r y”

Now prove the dual result:
lemma galois_con_left_unit_rel_eqI :

assumes “(L a R) l r”
and “x ∈ Domain L”

shows “l (r (l x)) ≡R l x”

Show that Galois connections are, essentially, uniquely determined by either of l or r.
We say ”essentially” because l and r are only L- and R-equivalent up to changes outside
the domains of L, R (i.e. values that are not of interest to us).
You only have to prove the case for fixed right adjoints:
lemma galois_con_unique_left:

assumes “(L a R) l r” “(L a R) l ′ r”
and “x ∈ Domain L”
shows “l x ≡R l ′ x”

Now prove the converse:
lemma galois_con_if_unique_left_if_galois_con:

assumes “(L a R) l r”
and “

∧
x. x ∈ Domain L =⇒ l x ≡R l ′ x”

shows “(L a R) l ′ r”

A canonical example of a Galois connection is the one between the reals and integers,
using the ceiling function d·e. Prove it:
lemma real_int_galois: “(rel_of (≤) a rel_of (≤)) ceiling real_of_int”

Galois connections have some good closure properties. Prove that they are closed under
composition:
lemma galois_compI :

assumes “(L a M) l1 r1”
and “(M a R) l2 r2”

shows “(L a R) (l2 o l1) (r1 o r2)”

As we have shown, given a Galois connection between a concrete and an abstract domain,
we can obtain sound abstractions for all concrete values. However, we not only need to
abstract values but also functions.
We hence want to show that Galois connections are closed under function relators.
Unfortunately, this is only true for monotone functions. To restrict the function relator
to such functions, we introduce the reflexive relator:

4

R⊕ ≡ {(x, y). (x, x) ∈ R ∧ (y, y) ∈ R ∧ (x, y) ∈ R}
The set of monotone functions from R to S can now be expressed as (R V S)⊕. To define
appropriate functions for the Galois connection between function relators, we introduce
the function mapper:
(f → g) h ≡ g ◦ h ◦ f
Finally, you can prove the closure property. The construction is as follows:
context

fixes L1 R1 l1 r1 L2 R2 l2 r2 L R l r
assumes gal_cons: “(L1 a R1) l1 r1” “(L2 a R2) l2 r2”
defines L_def [simp]: “L ≡ (L1 V L2)⊕”
and R_def [simp]: “R ≡ (R1 V R2)⊕”
and l_def [simp]: “l ≡ (r1 → l2)”
and r_def [simp]: “r ≡ (l1 → r2)”

begin

First prove the characteristic property of Galois connections:
lemma refl_fun_rel_galois_propI1:

assumes “g ∈ Domain R”
and “(f , r g) ∈ L”

shows “(l f , g) ∈ R”
lemma refl_fun_rel_galois_propI2:

assumes “f ∈ Domain L”
and “(l f , g) ∈ R”

shows “(f , r g) ∈ L”

Now prove the main theorem:
theorem galois_refl_fun_relI : “(L a R) l r”
end

Given a Galois connection (L a R) l r between a concrete and an abstract domain, we
can automatically derive an (R V R)-monotone abstraction f abs := (r → l) f for each
(L V L)-monotone operation f of the core language, according to the theorem we just
proved.
This works for any n-ary operator. Here are two concrete examples, where we let Isabelle
fill in the desired terms for the unknowns ?L, ?R, ?l, ?r. You can see the synthesised
instantiations by printing the theorem.
Note: schematic_goal is just a variant of lemma that allows us to leave some terms
unknown.
schematic_goal real_int_galois2:

“(?L a ?R) (?l :: (real ⇒ real) ⇒ int ⇒ int) ?r”
by (rule galois_refl_fun_relI real_int_galois)+

schematic_goal real_int_galois3:
“(?L a ?R) (?l :: (real ⇒ real ⇒ real) ⇒ int ⇒ int ⇒ int) ?r”
by (rule galois_refl_fun_relI real_int_galois)+

5

print_statement real_int_galois3

As expected, the Galois connection simply maps each abstract value to its concrecte
representation, applies the concrete operation, and then abstracts the result. Here is an
example:
lemma “(real_of_int → (real_of_int → ceiling)) (+) i1 i2 = dreal_of_int i1 + real_of_int
i2e”

unfolding fun_map_eq by (rule refl)

The following tasks are bonus exercises (5 bonus points in total).
Of course, we also want to know whether this abstraction is sound, i.e. f abs maps sound
approximations to sound approximations. Prove it:
lemma galois_fun_sound:

assumes gal_cons: “(L1 a R1) l1 r1” “(L2 a R2) l2 r2”
and f_mono: “(L1 Vm L2) f”
and ysound: “x L1/R1 r1 y”

shows “f x L2/R2 r2 (r1 → l2) f y”

Finally, we show that our construction not only gives us a sound but also the ”best” (i.e.
smallest) abstraction. In other words, the Galois abstraction f abs := (r → l) f of f is
an under-approximation of every sound abstraction of f. More formally: Fix relations L,
R and a concretisation r. Assume f ′ is a sound abstraction of f. We want to show that
((r → l) f , f ′) ∈ R V R.
There is a small problem with this endeavour: we only know about the concretisation
r but there is no abstraction l we can use to construct (r → l) f. Luckily, if R admits
lower bounds, we can construct a canonical abstraction:
l x :=

d
{y ∈ Domain R. (x, r y) ∈ L}.

context
fixes L :: “ ′a rel” and R :: “ ′b rel” and l r
and lbound :: “ ′b set ⇒ ′b”
assumes lbound_lower : “

∧
Y y. Y ⊆ Domain R =⇒ y ∈ Y =⇒ (lbound Y , y) ∈ R”

defines [simp]: “l ≡ λx. lbound {y ∈ Domain R. (x, r y) ∈ L}”
begin

Now prove optimality of (r → l) f. The following assumptions are sufficient:
lemma galois_fun_optimal:

assumes refl_onR: “refl_on (Domain R) R”
and rmono: “(R Vm L) r”
and f ′sound: “

∧
x y. x L/R r y =⇒ f x L/R r f ′ y”

and f ′mono: “(R Vm R) f ′”
shows “((r → l) f , f ′) ∈ R V R”

Finally show that L, R, l, r indeed form a Galois connection provided that R admits
infima and there is some Galois connection for L, R, r at all.
lemma galois_fun_canonical:

6

assumes galcon: “(L a R) l ′ r”
and lbound_least: “

∧
Y y ′. Y ⊆ Domain R =⇒ (

∧
y. y ∈ Y =⇒ (y ′, y) ∈ R) =⇒ (y ′,

lbound Y) ∈ R”
shows “(L a R) l r”

7

