Final Exam

Functional Data Structures

15. 2. 2023

First name:

Last name:

Student-Id (Matrikelnummer):

Signature:

1. The exam is to be solved in Isabelle on your own Laptop.
2. You may use your own notes, as well as all lecture material to solve the exam.

3. Using the internet is not allowed for any other reason than submitting your solution
to the submission system.

4. You have 120 minutes to solve the exam.

5. Please put your student ID and ID-card or driver’s license on the table until we have
checked it.

6. Please do not leave the room in the last 20 minutes of the exam — you may disturb
other students who need this time.




Proof Guidelines: We expect valid Isabelle proofs. sledgehammer may be used. The
use of sorry may lead to the deduction of points but is preferable to spending a lot of
time on individual proof steps. Unfinished proofs should be well written and easy to

understand!



1 Induction (Solution)

lemma count__app: "count(as @ bs) = count as + count bs”
proof (induction as)
case (Cons a as)
then show “case
by (cases a) auto
qed auto

lemma ok count_Zero: "ok bs = count bs = 0”
by (induction rule: ok.induct) (auto simp: count__app)



2 Bounds on Small-Step Execution (Solution)

fun bound :: “com = nat” where

"bound (IF __ THEN c1 ELSE ¢2) = 1 + max (bound cI) (bound ¢2)” |
“bound (cl1 ;; ¢2) = 1 + bound ¢l + bound c2” |

"bound (_ = _) =17

“bound = 0”7

lemma bound__decr: "while_free ¢ = (¢, s) — (¢, s') = bound ¢’ < bound ¢”
proof —
assume (¢, s) — (c¢’, 8)” "while_free ¢” thus ?thesis
by (induction rule: small_step_induct) auto
qed



3 Hoare Logic (Solution)

abbreviation (input) change_rule :: "vname = bexp = assn = assn” where
“change_rule x b P = As. V. bval b (s(z:=n)) — P(s(z:=n))”

lemma sound: "= {change_rule x b P} CHANGE x ST b {P}”
unfolding hoare_valid__def by auto

lemma complete: 7= {P} (CHANGE z ST b) {Q} =+ {P} CHANGE = ST b {Q}”
unfolding hoare wvalid def
by (rule strengthen__pre[where P="change rule z b Q”])
(auto intro: Change)

abbreviation “eq al a2 = And (Not (Less al a2)) (Not (Less a2 al))”

definition MINUS :: com where
"MINUS = CHANGE "'y"" ST eq (Plus (V "'y (V "y")) (N 0)”

lemma MINUS correct:
" AAs. s=sot MINUS {Xs. s "'y = — s "z"" N (Vv #£ "y". sv=sy v)}”
unfolding MINUS__def
by (rule strengthen_pre[OF __ Change]) auto

definition nvar :: “vname = bexp = vname = state = assn” where
“invar x by so = (As. sz + sy=3s0y AN (Vv. v ¢ {z,y} — sv=s9v))”



4 Abstract Proof (Solution)

lemma fixp:
fixes f :: "nat = nat”
assumes incr: Vn.n < fn”
assumes A: A = {m. In. m = fn}”
assumes maz: 7Am € A.Vne A. n<m”
shows "JkeA. fk=Fk"
proof —
from maz obtain m where "m € A” Wn € A. n < m” by blast
from A have 7fm € A” by blast
with <VneA. n < m» have fm < m” by blast
with incr have 7f m = m” by (simp add: le__antisym)
with «<m € A> show ?thesis by auto
qed



5 Abstract Interpretation (Solution)

fun less _eq

»

"(Bn) <

P(_bits) <

fun sup_ bits ::

7 U Any =
”Any L

definition

Bm++—n<m”|
<— False”

— AnyH
— Any”

|
|
”(B z) U (B y) = B (maz z y)”

bits :: "bits = bits = bool” (infix "<” 50) where
" < Any +— True” |

: "bits = bits = bits” (infix "U” 50) where

”is _complete_lattice = True”

As it is a total order over a nonempty set.

fun plus’_bits ::

‘plus’_bits _ Any _ = Any” |
"plus’_bits _ __ Any = Any” |

"plus’ _bits n (B z) (By) =

definition
definition
definition
definition
definition

“"nat = bits = bits = bits” where

(if maz x y = n then Any else B (Suc (maz x y)))”

;Some(Any),

"Ao=[None,Some(B 1), ,

”A1=[None, ,Some(B 1)

”As=[None ,Some(B 1)
”As=[None

"A4=[None, ,Some(B 1)

,Some(Any)

»”

,Some(Any)]”

fun inv_plus’_bits :: “bits = bits = bits = (bits * bits)” where

Zinv_plus’
Zinv_plus’
Zinv_plus’
"invy_plus’
"iny_plus’
Zinv_plus’
Zinv_plus’

bits _ (B 0) _ =

(B0,B0)" |

bits (B0)=(B0,B0)" |

bits Any zy = (z,v9)" |

bits (B r) Any Any = (Br, Br)” |

bits

bits

(Br)
bits (B r) Any (B a2) =
(Br) (Bal) (Ba2) =

(B al) Any = (B (min r al), Br)” |

(Br, B (minr a?)) 7
(B (min r al), B (min r a2))”

fun inv_less’ bits :: "bool = bits = bits = (bits * bits)” where

7inv_less’
7inv_less’
Zinv_less’
“inv_less’
“inv_less’
Zinv_less’
7inv_less’

_bits _ (B 0) __ =

(B0, B0)” |

' bits__ (B0O)=(B0,B0)”|
'_bits True Any (Bn) = (Bn, Bn)” |

" _bits _ Any x = (Any, z)”

_bits False (Bn) Any = (Bn, Bn)” |

'_bits _ xz Any = (z, Any)”

' bits True (B al) (Ba2) =

(B (min al a2), B a2)” |

,Some(Any)]”



“inu_less’_bits False (B al) (B a2) = (B al, B (min al a2))”



	Induction (Solution)
	Bounds on Small-Step Execution (Solution)
	Hoare Logic (Solution)
	Abstract Proof (Solution)
	Abstract Interpretation (Solution)

