
Technische Universität München WS 24/25
Institut für Informatik 5.12.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 8

Note: The tutorial is cancelled this week due to the Dies Academicus.

Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone
function f we have a fixpoint of f which is a greatest lower bound of P . In this exercise,
we want to prove the Knaster-Tarski theorem.
First we give a construction of the greatest lower bound of all fixed points P of the
function f. This is the union of all sets u smaller than P and f u. Then the task is to
show that this is a fixed point, and that it is the greatest lower bound of all sets in P.
Let us define Inf_fixp:
definition Inf_fixp :: “(′a set ⇒ ′a set) ⇒ ′a set set ⇒ ′a set” where

“Inf_fixp f P =
⋃
{u. u ⊆

⋂
P ∩ f u }”

To work directly with this definition is a little cumbersome, we propose to use the
following two theorems:
lemma Inf_fixp_upperbound: “X ⊆

⋂
P =⇒ X ⊆ f X =⇒ X ⊆ Inf_fixp f P”

by (auto simp: Inf_fixp_def)

lemma Inf_fixp_least: “(
∧

u. u ⊆
⋂

P =⇒ u ⊆ f u =⇒ u ⊆ X) =⇒ Inf_fixp f P ⊆ X”
by (auto simp: Inf_fixp_def)

Now prove, that Inf_fixp is acually a fixed point of f.
Hint: First prove Inf_fixp f P ⊆ f (Inf_fixp f P), this will be used for the other direction.
It may be helpful to first think about the structure of your proof using pen-and-paper
and then translate it into Isar.
lemma Inf_fixp:

assumes mono: “mono f”
and P: “

∧
p. p ∈ P =⇒ f p = p”

shows “Inf_fixp f P = f (Inf_fixp f P)”

Now we prove that it is a lower bound:
lemma Inf_fixp_lower : “Inf_fixp f P ⊆

⋂
P”

1

And that it is the greatest lower bound:
lemma Inf_fixp_greatest:

assumes “f q = q”
and “q ⊆

⋂
P”

shows “q ⊆ Inf_fixp f P”

Homework 8.1 Idempotence of Dead Varibale Elimination

Submission until Wednesday, Dec 11, 23:59pm.

Dead variable elimination (bury) is not idempotent: multiple passes may reduce a com-
mand further and further. Give an example where bury (bury c X) X 6= bury c X. Hint:
a sequence of two assignments.
We define a textually identical function bury in the context of true liveness analysis
(theory HOL−IMP.Live_True).
fun bury :: “com ⇒ vname set ⇒ com” where
“bury SKIP X = SKIP” |
“bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)” |
“bury (c1;; c2) X = (bury c1 (L c2 X);; bury c2 X)” |
“bury (IF b THEN c1 ELSE c2) X = IF b THEN bury c1 X ELSE bury c2 X” |
“bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)”

The aim of this homework is to prove that this version of Hw1.bury is idempotent.
This will involve reasoning about lfp. In particular we will need that lfp is the least
pre-fixpoint. This is expressed by two lemmas from the library:
lfp_unfold: mono f =⇒ lfp f = f (lfp f)
lfp_lowerbound: f A ≤ A =⇒ lfp f ≤ A

Prove the following lemma for showing that two fixpoints are the same, where mono_def :
mono f = (∀ x y. x ≤ y −→ f x ≤ f y).
theorem lfp_eq: “[[mono f ; mono g; lfp f ⊆ U ; lfp g ⊆ U ;∧

X . X ⊆ U =⇒ f X = g X]] =⇒ lfp f = lfp g”

It says that if we have an upper bound U for the lfp of both f and g, and f and g behave
the same below U, then they have the same lfp.
The following two tweaks improve proof automation:
lemmas [simp] = L.simps(5)
lemmas L_mono2 = L_mono[unfolded mono_def]

To show that Hw1.bury is idempotent we need a lemma:
theorem L_bury[simp]: “X ⊆ Y =⇒ L (bury c Y) X = L c X”
proof(induction c arbitrary: X Y)

2

The proof is straightforward except for the case WHILE b DO c. The definition of L in
this case means that we have to show an equality of two lfps. Lemma lfp_eq comes to
the rescue. We recommend the upper bound lfp (λZ . vars b ∪ Y ∪ L c Z). One of the
two upper bound assumptions of lemma lfp_eq can be proved by showing that U is a
pre-fixpoint of f or g (see lemma lfp_lowerbound).
Now we can prove idempotence of Hw1.bury, again by induction on c, but this time even
the While case should be easy.
theorem bury_bury: “X ⊆ Y =⇒ bury (bury c Y) X = bury c X”

Idempotence is a corollary:
corollary “bury (bury c X) X = bury c X”

Homework 8.2 True Liveness refines Liveness

Submission until Wednesday, Dec 11, 23:59pm.

In the lecture, we introduced two liveness analyses, namely Liveness Live.L and True
Liveness Live_True.L. Prove that True Liveness refines the Liveness analysis, i.e. show
the former is a subset of the latter.

theorem True_L_subs_L: “Live_True.L c X ⊆ Live.L c X”

3

