Semantics of Programming Languages Exercise Sheet 8

Note: The tutorial is cancelled this week due to the Dies Academicus.

Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone function f we have a fixpoint of f which is a greatest lower bound of P. In this exercise, we want to prove the Knaster-Tarski theorem.

First we give a construction of the greatest lower bound of all fixed points P of the function f. This is the union of all sets u smaller than P and f u. Then the task is to show that this is a fixed point, and that it is the greatest lower bound of all sets in P. Let us define Inf fixp:

definition Inf_fixp :: "('a set \Rightarrow 'a set) \Rightarrow 'a set set \Rightarrow 'a set" where "Inf_fixp $f P = \bigcup \{u. \ u \subseteq \bigcap P \cap f u \}$ "

To work directly with this definition is a little cumbersome, we propose to use the following two theorems:

lemma $Inf_fixp_upperbound: "X \subseteq \bigcap P \implies X \subseteq f X \implies X \subseteq Inf_fixp f P"$ **by** (*auto simp:* Inf_fixp_def)

lemma Inf_fixp_least: "($\land u. u \subseteq \bigcap P \Longrightarrow u \subseteq f u \Longrightarrow u \subseteq X$) \Longrightarrow Inf_fixp $f P \subseteq X$ " by (auto simp: Inf_fixp_def)

Now prove, that *Inf_fixp* is acually a fixed point of *f*.

Hint: First prove $Inf_fixp \ f P \subseteq f$ ($Inf_fixp \ f P$), this will be used for the other direction. It may be helpful to first think about the structure of your proof using pen-and-paper and then translate it into Isar.

lemma Inf_fixp : assumes mono: "mono f" and P: " $\land p. p \in P \Longrightarrow f p = p$ " shows " $Inf_fixp f P = f (Inf_fixp f P)$ "

Now we prove that it is a lower bound: lemma Inf_fixp_lower : " $Inf_fixp f P \subseteq \bigcap P$ " And that it is the greatest lower bound:

lemma Inf_fixp_greatest: **assumes** "f q = q" **and** " $q \subseteq \bigcap P$ " **shows** " $q \subseteq Inf_fixp f P$ "

Homework 8.1 Idempotence of Dead Varibale Elimination

Submission until Wednesday, Dec 11, 23:59pm.

Dead variable elimination (*bury*) is not idempotent: multiple passes may reduce a command further and further. Give an example where *bury* (*bury* c X) $X \neq bury c X$. Hint: a sequence of two assignments.

We define a textually identical function *bury* in the context of true liveness analysis (theory *HOL-IMP.Live_True*).

fun bury :: "com \Rightarrow vname set \Rightarrow com" **where** "bury SKIP X = SKIP" | "bury (x ::= a) X = (if x \in X then x ::= a else SKIP)" | "bury (c₁;; c₂) X = (bury c₁ (L c₂ X);; bury c₂ X)" | "bury (IF b THEN c₁ ELSE c₂) X = IF b THEN bury c₁ X ELSE bury c₂ X" | "bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)"

The aim of this homework is to prove that this version of Hw1.bury is idempotent. This will involve reasoning about *lfp*. In particular we will need that *lfp* is the least pre-fixpoint. This is expressed by two lemmas from the library:

 $\begin{array}{ll} lfp_unfold: & mono \ f \implies lfp \ f = f \ (lfp \ f) \\ lfp_lowerbound: & f \ A \le A \implies lfp \ f \le A \end{array}$

Prove the following lemma for showing that two fixpoints are the same, where *mono_def*: mono $f = (\forall x y. x \le y \longrightarrow f x \le f y)$.

theorem lfp_eq : "[[mono f; mono g; $lfp \ f \subseteq U$; $lfp \ g \subseteq U$; $\bigwedge X. \ X \subseteq U \Longrightarrow f \ X = g \ X$]] $\Longrightarrow lfp \ f = lfp \ g$ "

It says that if we have an upper bound U for the lfp of both f and g, and f and g behave the same below U, then they have the same lfp.

The following two tweaks improve proof automation:

lemmas [simp] = L.simps(5)**lemmas** $L_mono2 = L_mono[unfolded mono_def]$

To show that Hw1.bury is idempotent we need a lemma:

theorem $L_bury[simp]$: " $X \subseteq Y \Longrightarrow L$ (bury c Y) X = L c X" **proof**(induction c arbitrary: X Y) The proof is straightforward except for the case WHILE b DO c. The definition of L in this case means that we have to show an equality of two lfps. Lemma lfp_eq comes to the rescue. We recommend the upper bound $lfp (\lambda Z. vars b \cup Y \cup L c Z)$. One of the two upper bound assumptions of lemma lfp_eq can be proved by showing that U is a pre-fixpoint of f or g (see lemma $lfp_lowerbound$).

Now we can prove idempotence of Hw1.bury, again by induction on c, but this time even the *While* case should be easy.

theorem bury_bury: " $X \subseteq Y \Longrightarrow$ bury (bury c Y) X = bury c X"

Idempotence is a corollary:

corollary "bury (bury c X) X = bury c X"

Homework 8.2 True Liveness refines Liveness

Submission until Wednesday, Dec 11, 23:59pm.

In the lecture, we introduced two liveness analyses, namely Liveness Live.L and True Liveness $Live_True.L$. Prove that True Liveness refines the Liveness analysis, i.e. show the former is a subset of the latter.

theorem $True_L_subs_L$: "Live_True.L c X \subseteq Live.L c X"