
Technische Universität München WS 24/25
Institut für Informatik 12.12.2023

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Denotational Semantics

Define a denotational semantics for REPEAT c UNTIL b-loops that run a command c
(at least once) until b is true.
datatype com = SKIP

| Assign vname aexp (“_ ::= _” [1000, 61] 61)
| Seq com com (“_;;/ _” [60, 61] 60)
| If bexp com com (“(IF _/ THEN _/ ELSE _)” [0, 0, 61] 61)
| While bexp com (“(WHILE _/ DO _)” [0, 61] 61)
| Repeat com bexp (“(REPEAT _/ UNTIL _)” [0, 61] 61)

inductive
big_step :: “com × state ⇒ state ⇒ bool” (infix “⇒” 55)

where
Skip: “(SKIP,s) ⇒ s” |
Assign: “(x ::= a,s) ⇒ s(x := aval a s)” |
Seq: “[[(c1,s1) ⇒ s2; (c2,s2) ⇒ s3]] =⇒ (c1;;c2, s1) ⇒ s3” |
IfTrue: “[[bval b s; (c1,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
IfFalse: “[[¬bval b s; (c2,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
WhileFalse: “¬bval b s =⇒ (WHILE b DO c,s) ⇒ s” |
WhileTrue: “[[bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3]]
=⇒ (WHILE b DO c, s1) ⇒ s3”

type_synonym com_den = “(state × state) set”

definition W :: “(state ⇒ bool) ⇒ com_den ⇒ (com_den ⇒ com_den)” where
“W db dc = (λdw. {(s,t). if db s then (s,t) ∈ dc O dw else s=t})”

fun D :: “com ⇒ com_den” where
“D SKIP = Id” |
“D (x ::= a) = {(s,t). t = s(x := aval a s)}” |
“D (c1;;c2) = D(c1) O D(c2)” |
“D (IF b THEN c1 ELSE c2)
= {(s,t). if bval b s then (s,t) ∈ D c1 else (s,t) ∈ D c2}” |

“D (WHILE b DO c) = lfp (W (bval b) (D c))”

1

Exercise 9.2 Chains

A function c :: nat ⇒ ′a is called an ω−chain on ′a if and only if:
definition “ωchain (c :: nat ⇒ ′a::order) ≡ ∀n. c n ≤ c (Suc n)”

lemma ωchainI [intro]:
assumes “

∧
n. c n ≤ c (Suc n)”

shows “ωchain c”
unfolding ωchain_def using assms by blast

Next, we set up the lifting of a partial order on ′a to a partial order on ′a option,
defined in the expected way - don’t worry about the specifics here, you will learn about
instantiation later in the course.
instantiation option :: (order) order
begin

fun less_eq_option :: “ ′a option ⇒ ′a option ⇒ bool” where
“None ≤ _ ←→ True”
| “_ ≤ None ←→ False”
| “Some x ≤ Some y ←→ x ≤ y”

definition “(x :: ′a option) < y ≡ x ≤ y ∧ x 6= y”

instance by standard
(force simp: less_option_def elim!: less_eq_option.elims intro: less_eq_option.elims(1))+

end

We want to show that every (non-empty) ω−chain on ′a option induces an ω−chain on
′a.
Complete the following as a structured Isar proof. It is recommended (but not manda-
tory) to follow the given proof structure. You must only use simp, auto, blast, fastforce,
cases as proof methods. You must not use apply, metis, meson, smt, etc.
Recall that definitions within a lemma statement are available under the usual . . ._def
name.
declare Suc_lessI [intro]

theorem option_chain:
assumes chainc: “ωchain (c :: nat ⇒ (′a :: order) option)”
and cn_eq: “c n0 = Some x”
and clt: “

∧
m. m < n0 =⇒ c m = None”

defines “c ′ ≡ λn. case c n of None ⇒ x | Some y ⇒ y”
shows “ωchain c ′”

proof (rule ωchainI)
have cge: “

∧
m. n0 ≤ m =⇒ c m = Some (c ′ m)”

proof −
fix m assume “n0 ≤ m”

2

then show “c m = Some (c ′ m)”
qed

fix m show “c ′ m ≤ c ′ (Suc m)”
qed

Homework 9.1 Denotational Semantics (5 points)

Submission until Wednesday, Dec 18, 23:59pm.

We again consider the extension of IMP with non-determinism from exercise sheet 5.
This time, we also add a construct LOOP c for non-deterministic looping. The idea is
that LOOP c can non-deterministically decide to either stop iteration and do nothing
or to execute the loop body c for one more time.
datatype com = SKIP | Assign (char list) aexp | Seq com com | com.If bexp com com
| While bexp com | Or com com | ASSUME bexp | Loop com

First extend the big-step semantics with this new construct:
inductive

big_step :: “com × state ⇒ state ⇒ bool” (infix “⇒” 55)
where
Skip: “(SKIP,s) ⇒ s” |
Assign: “(x ::= a,s) ⇒ s(x := aval a s)” |
Seq: “[[(c1,s1) ⇒ s2; (c2,s2) ⇒ s3]] =⇒ (c1;;c2, s1) ⇒ s3” |
IfTrue: “[[bval b s; (c1,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
IfFalse: “[[¬bval b s; (c2,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
WhileFalse: “¬bval b s =⇒ (WHILE b DO c,s) ⇒ s” |
WhileTrue: “[[bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3]] =⇒ (WHILE b DO c, s1)
⇒ s3” |
OrLeft: “[[(c1,s) ⇒ s ′]] =⇒ (c1 OR c2,s) ⇒ s ′” |
OrRight: “[[(c2,s) ⇒ s ′]] =⇒ (c1 OR c2,s) ⇒ s ′” |
Assume: “bval b s =⇒ (ASSUME b, s) ⇒ s” |
— Your cases here:

declare big_step.intros [intro]
lemmas big_step_induct = big_step.induct[split_format(complete)]

inductive_cases skipE [elim!]: “(SKIP,s) ⇒ t”
inductive_cases AssignE [elim!]: “(x ::= a,s) ⇒ t”
inductive_cases SeqE [elim!]: “(c1;;c2,s1) ⇒ s3”
inductive_cases OrE : “(c1 OR c2,s1) ⇒ s3”
inductive_cases AssumeE [elim!]: “(ASSUME b, s1) ⇒ s2”
inductive_cases IfE [elim!]: “(IF b THEN c1 ELSE c2,s) ⇒ t”
inductive_cases WhileE [elim]: “(WHILE b DO c,s) ⇒ t”

Now, give a denotational semantics for this language:
type_synonym com_den = “(state × state) set”

3

fun D :: “com ⇒ com_den” where
“D SKIP = Id” |
“D (x ::= a) = {(s,t). t = s(x := aval a s)}” |
“D (c1;;c2) = D(c1) O D(c2)” |
“D (IF b THEN c1 ELSE c2)
= {(s,t). if bval b s then (s,t) ∈ D c1 else (s,t) ∈ D c2}” |

“D (WHILE b DO c) = lfp (W (bval b) (D c))”
— Your cases here:

Then correct the proof of the equivalence theorem between big-step and denotational
semantics:

theorem denotational_is_big_step:
“(s,t) ∈ D(c) = ((c,s) ⇒ t)”

Use theory HOL−IMP.Denotational as a template for the proof!

Homework 9.2 Formalization of Formal Language Theory

Submission until Wednesday, Jan 8, 23:59pm.
Over the next few weeks, you will have the opportunity to create some new Isabelle
theories outside of semantics.
We are currently working on an all-singing, all-dancing formalization of the theory of
regular and context-free gramars and languages. Some of it is already in the Archive of
Formal Proofs (e.g. Regular Expressions, Finite Automata) and some is still in private
repositories. We are in the process of unifying all of it — and of adding some new,
never-before formalized parts of the theory. We want you to help us in building up this
unique formalization of a fundamental area of computer science. Here are some of the
building blocks that you can help with, from easy to difficult:

• Grammar cleaning: Elimination of
– unit productions
– epsilon productions
– unreachable symbols
– unproductive symbols

• Deciding if a word is in L(G).
• Converting between right-linear grammars and regular expressions
• Punping Lemma applications:

– Prove that anbncn is not context-free
– Prove that context-free languages are not closed under intersection.

• Conversions to Greibach Normal Form

4

https://www.isa-afp.org/
https://www.isa-afp.org/
https://www.isa-afp.org/entries/Regular-Sets.html
https://www.isa-afp.org/entries/Finite_Automata_HF.html

• Ogden’s Lemma
• Parikh’s Theorem – this one has never been formalized!
• Existence of an inherently ambiguous language

If you are interested, you must get in touch with Tobias Nipkow (who co-
ordinates the whole enterprise), discuss the topics with him and “sign up” for a
specific topic. Email: nipkow@in.tum.de Difficult topics can also be tackled by teams
of two students by request (include your request in your email). We can generate more
topics on demand.
If for some reason you want to avoid context-free languages, you can also formalize
some topic of your own choice from any area of mathematics or computer science but it
should contain some interesting proof(s). Creativity is encouraged and will be rewarded,
but keep in mind that formalizations can often be more difficult than anticipated. Set
yourself realistic goals. We recommend to discuss your project with one of the tutors
beforehand.
Whatever topic you decide to work on:

• Aim for readable, structured proofs.
• Comment your formalization well. We need to read and understand it.
• Incomplete or unfinished formalizations are welcome and will be graded

(but clean them up so it is obvious what is there and what is missing).
In total, this exercise will be worth 15 points, plus bonus points for nice submissions.
(We value your work and have awarded up to 30 points in the past.)

5

https://en.wikipedia.org/wiki/Parikh%27s_theorem

