Semantics of Programming Languages Exercise Sheet 12

Exercise 12.1 Complete Lattices

Which of the following ordered sets are complete lattices?

- \mathbb{N} , the set of natural numbers $\{0, 1, 2, 3, \ldots\}$ with the usual order.
- A finite set A with a total order \leq on it.
- N∪{∞}, the set of natural numbers plus infinity, with the usual order and n < ∞ for all n ∈ N.

Exercise 12.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice *pos, zero, neg, any*, where *pos* abstracts positive values, *zero* abstracts zero, *neg* abstracts negative values, and any abstracts any value.

datatype $sign = Pos \mid Zero \mid Neg \mid Any$

instantiation sign :: orderinstantiation $sign :: semilattice_sup_top$ fun $\gamma_sign :: "sign \Rightarrow val set"$ fun $num_sign :: "val \Rightarrow sign"$ fun $plus_sign :: "sign \Rightarrow sign \Rightarrow sign"$ global_interpretation $Val_semilattice$ where $\gamma = \gamma_sign$ and $num' = num_sign$ and $plus' = plus_sign$ global_interpretation Abs_Int where $\gamma = \gamma_sign$ and $num' = num_sign$ and $plus' = plus_sign$ defines $aval_sign = aval'$ and $step_sign = step'$ and $AI_sign = AI$

Some tests:

 $\begin{array}{l} \textbf{definition} \quad ``test1_sign = \\ `'x'' ::= N 1;; \\ WHILE \ Less \ (V \ ''x'') \ (N \ 100) \ DO \ ''x'' ::= Plus \ (V \ ''x'') \ (N \ 2) \ "\\ \textbf{value} \quad ``show_acom \ (the(AI_sign \ test1_sign)) \ "\\ \end{array}$

definition "test2_sign = "x" ::= N 1;;

WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)"

definition "steps $c \ i = ((step_sign \top) \frown i) (bot \ c)$ "

```
value "show_acom (steps test2_sign 0)"
```

•••

value "show_acom (steps test2_sign 6)"
value "show_acom (the(AI_sign test2_sign))"

Exercise 12.3 Al for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure out, that after executing the program x:=2; *IF* x<2 *THEN* x:=2 *ELSE* x:=1, x will be constant.

In this exercise, we extend our abstract interpreter with a simple analysis of boolean expressions. To this end, modify locale *Val_semilattice* from theory *Abs_Int0.thy* as follows:

- Introduce an abstract domain 'bv for boolean values, add, analogously to num' and plus' also functions for the boolean operations and for less.
- Modify *Abs_Int0* to accommodate for your changes.

Homework 12.1 Al for the Extended Reals

Submission until Wednesday, Jan 22, 23:59pm. For this exercise, we will consider a modified variant of IMP that computes on real numbers extended with $-\infty$ and ∞ . The corresponding type is *ereal*. We will consider " $-\infty + \infty$ " and " $\infty + (-\infty)$ " erroneous computations. We propagate errors by using the *option* type, i.e. we set val = ereal option. The theories up to *Collecting* for this variant are already provided. Your task is now to design an abstract interpreter on the domain consisting of subsets of $\{\infty^-, \infty^+, NaN, Real\}$ where NaN signals a computation error and all other values have their obvious meaning. First adopt Abs_Int0 and Abs_Int1 to accommodate for the changed semantics, and then instantiate the abstract interpreter with your analysis. For this step you best modify the parity analysis Abs_Int1_parity .

Hints: To benefit from proof automation it can be helpful to slightly change the format of the rules for addition in *Val_semilattice*. For instance, you could reformulate $gamma_plus'$ as: $i1 \in \gamma \ a1 \Longrightarrow i2 \in \gamma \ a2 \Longrightarrow i = i1 + i2 \Longrightarrow i \in \gamma(plus' \ a1 \ a2)$. (You will need to change the interface *Val_semilattice*).

You can start the formalization of the AI like this: **datatype** bound = $\infty^- \mid \infty^+ \mid NaN \mid Real$ datatype bounds = B (bound set)

instantiation *bounds* :: *order* begin

definition *less_eq_bounds* where " $x \le y = (case (x, y) of (B x, B y) \Rightarrow x \subseteq y)$ "

definition *less_bounds* where " $x < y = (case (x, y) of (B x, B y) \Rightarrow x \subset y)$ "

instance end

For the AI, interpret *Abs_Int, Abs_Int_mono*, and *Abs_Int_measure*:

instantiation bounds :: semilattice_sup_top
begin

definition sup_bounds definition top_bounds instance end

fun $\gamma_bounds ::$ "bounds \Rightarrow val set" definition $num_bounds ::$ "ereal \Rightarrow bounds" fun $plus_bounds ::$ "bounds \Rightarrow bounds \Rightarrow bounds" global_interpretation $Val_semilattice$ where $\gamma = \gamma_bounds$ and $num' = num_bounds$ and $plus' = plus_bounds$ global_interpretation Abs_Int where $\gamma = \gamma_bounds$ and $num' = num_bounds$ and $plus' = plus_bounds$ defines $aval_bounds = aval'$ and $step_bounds = step'$ and $AI_bounds = AI$

global_interpretation Abs_Int_mono where $\gamma = \gamma_bounds$ and $num' = num_bounds$ and $plus' = plus_bounds$ fun $m_bounds :: "bounds \Rightarrow nat"$ abbreviation $h_bounds :: nat$

global_interpretation $Abs_Int_measure$ where $\gamma = \gamma_bounds$ and $num' = num_bounds$ and $plus' = plus_bounds$ and $m = m_bounds$ and $h = h_bounds$