
Technische Universität München WS 24/25
Institut für Informatik 16.01.2025

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Complete Lattices

Which of the following ordered sets are complete lattices?
• N, the set of natural numbers {0, 1, 2, 3, . . .} with the usual order.
• A finite set A with a total order ≤ on it.
• N∪{∞}, the set of natural numbers plus infinity, with the usual order and n < ∞

for all n ∈ N.

Exercise 12.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.
datatype sign = Pos | Zero | Neg | Any

instantiation sign :: order
instantiation sign :: semilattice_sup_top
fun γ_sign :: “sign ⇒ val set”
fun num_sign :: “val ⇒ sign”
fun plus_sign :: “sign ⇒ sign ⇒ sign”
global_interpretation Val_semilattice

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
global_interpretation Abs_Int

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
defines aval_sign = aval ′ and step_sign = step ′ and AI_sign = AI

Some tests:
definition “test1_sign =

′′x ′′ ::= N 1;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)”

value “show_acom (the(AI_sign test1_sign))”

definition “test2_sign =
′′x ′′ ::= N 1;;

1

WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)”

definition “steps c i = ((step_sign >) ^^ i) (bot c)”

value “show_acom (steps test2_sign 0)”

...
value “show_acom (steps test2_sign 6)”
value “show_acom (the(AI_sign test2_sign))”

Exercise 12.3 AI for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure
out, that after executing the program x:=2; IF x<2 THEN x:=2 ELSE x:=1, x will be
constant.
In this exercise, we extend our abstract interpreter with a simple analysis of boolean
expressions. To this end, modify locale Val_semilattice from theory Abs_Int0.thy as
follows:

• Introduce an abstract domain ′bv for boolean values, add, analogously to num ′ and
plus ′ also functions for the boolean operations and for less.

• Modify Abs_Int0 to accommodate for your changes.

Homework 12.1 AI for the Extended Reals

Submission until Wednesday, Jan 22, 23:59pm. For this exercise, we will consider a
modified variant of IMP that computes on real numbers extended with −∞ and ∞. The
corresponding type is ereal. We will consider “−∞ + ∞” and “∞ + (−∞)” erroneous
computations. We propagate errors by using the option type, i.e. we set val = ereal
option. The theories up to Collecting for this variant are already provided. Your task
is now to design an abstract interpreter on the domain consisting of subsets of {∞−,
∞+, NaN , Real} where NaN signals a computation error and all other values have their
obvious meaning. First adopt Abs_Int0 and Abs_Int1 to accommodate for the changed
semantics, and then instantiate the abstract interpreter with your analysis. For this step
you best modify the parity analysis Abs_Int1_parity.
Hints: To benefit from proof automation it can be helpful to slightly change the for-
mat of the rules for addition in Val_semilattice. For instance, you could reformulate
gamma_plus ′ as: i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i = i1 + i2 =⇒ i ∈ γ(plus ′ a1 a2). (You
will need to change the interface Val_semilattice).

You can start the formalization of the AI like this:
datatype bound = ∞− | ∞+ | NaN | Real

2

datatype bounds = B (bound set)
instantiation bounds :: order
begin

definition less_eq_bounds where
“x ≤ y = (case (x, y) of (B x, B y) ⇒ x ⊆ y)”

definition less_bounds where
“x < y = (case (x, y) of (B x, B y) ⇒ x ⊂ y)”

instance
end

For the AI, interpret Abs_Int, Abs_Int_mono, and Abs_Int_measure:
instantiation bounds :: semilattice_sup_top
begin

definition sup_bounds
definition top_bounds
instance
end

fun γ_bounds :: “bounds ⇒ val set”
definition num_bounds :: “ereal ⇒ bounds”
fun plus_bounds :: “bounds ⇒ bounds ⇒ bounds”
global_interpretation Val_semilattice
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
global_interpretation Abs_Int
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
defines aval_bounds = aval ′ and step_bounds = step ′ and AI_bounds = AI

global_interpretation Abs_Int_mono
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds

fun m_bounds :: “bounds ⇒ nat”
abbreviation h_bounds :: nat

global_interpretation Abs_Int_measure
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
and m = m_bounds and h = h_bounds

3

